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Evolutionary and Deep Reinforcement Learning Algorithms
for Optimizing the Lifetime of Wireless Sensor Networks

Abstract

In recent years, wireless sensor networks (WSNs) have become an essential part of
many civilian applications, such as smart agriculture, health monitoring, and smart cities.
However, the limited energy capacity of the sensors poses a significant challenge to en-
suring continuous surveillance. In this thesis, we study two emerging techniques to pro-
long the network’s lifetime: energy-efficient routing via relay node placement and routing
strategies for the mobile charger in wireless rechargeable sensor networks (WRSNs).

The first problem involves optimizing the routing protocol by deploying non-sensing
relay nodes (RNs). Recent research either focused on finding the minimum number of
RNs required to reduce deployment costs or developing efficient routing schemes to re-
duce energy use. However, striking a balance between these criteria remains a significant
challenge. To address this issue, we propose a multi-objective approach to constructing
an efficient communication structure with the least possible number of RNs, thereby pro-
longing the network’s lifetime while ensuring its connectivity and reliability. We conduct
extensive experiments to demonstrate the effectiveness of our method and show that it
provides a better trade-off compared to existing algorithms.

In the second problem, we focus on addressing the challenges faced inWRSNs, where
a mobile charger can be employed to move around and charge the sensors. Existing ap-
proaches struggle to design an optimal charging path for the mobile charger while account-
ing for the uncertainties arising in the network, which could come from node failures or
deployments. To overcome this challenge, we propose a novel charging scheme that uses a
deep reinforcement learning (DRL) approach to guide the mobile charger adaptively. Our
approach enables the mobile charger to adapt to spontaneous changes in the network topol-
ogy. The experiments show the superiority of our model compared to existing on-demand
methods in prolonging the network lifetime.

Our proposed solutions for the two problems of relay node placement and mobile
charger routing can significantly prolong the network’s lifespan and reduce maintenance
costs. The potential for combining these two techniques in WRSNs to further enhance the
network’s sustainability and reliability is an interesting future research direction. Adopting
these solutions, especially new advancements in deep reinforcement learning can facilitate
the development of more efficient and effective WSNs, enabling us to better monitor and
manage various systems and processes in our daily lives.
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Các giải thuật tiến hoá và học tăng cường để tối ưu thời gian
sống của mạng cảm biến không dây

Tóm tắt luận văn

Trong những năm gần đây, mạng cảm biến không dây đã trở thành một phần cần thiết
trong nhiều ứng dụng dân sự, như giám sát sức khỏe, nông nghiệp và thành phố thông
minh. Tuy nhiên, lượng năng lượng hạn chế được cài đặt trong các cảm biến đặt ra thách
thức lớn trong việc đảm bảo dịch vụ trong các ứng dụng yêu cần giám sát liên tục và với
tần suất cao. Trong luận văn này, chúng tôi nghiên cứu hai phương pháp mới để kéo dài
tuổi thọ mạng: định tuyến tiết kiệm năng lượng thông qua đặt các nút trung gian và chiến
lược định tuyến cho bộ sạc di động trong mạng cảm biến có thể sạc lại không dây.

Bài toán đầu tiên liên quan đến tối ưu hóa giao thức định tuyến bằng cách triển khai
các nút trung gian không cảm biến. Các nghiên cứu gần đây tập trung vào tìm số lượng
tối thiểu nút trung gian cần thiết để giảm chi phí triển khai hoặc phát triển các chiến lược
định tuyến để giảm năng lượng sử dụng. Tuy nhiên, tìm sự cân bằng giữa các tiêu chí này
vẫn là một thách thức lớn. Để giải quyết vấn đề này, chúng tôi đề xuất một phương pháp
đa mục tiêu để xây dựng một cấu trúc truyền thông hiệu quả với số lượng nút trung gian ít
nhất có thể, từ đó kéo dài tuổi thọ mạng trong khi đảm bảo kết nối của nó. Chúng tôi tiến
hành các thử nghiệm để chứng minh tính hiệu quả của phương pháp của chúng tôi và cho
thấy nó cung cấp sự cân bằng tốt hơn so với các thuật toán hiện có.

Ở bài toán thứ hai, chúng tôi tập trung vào việc giải quyết các thách thức trong mạng
cảm biến không dây sạc lại, nơi một bộ sạc di động có thể được sử dụng để di chuyển và
sạc các cảm biến. Bài toán quan trọng là thiết kế một chiến lược sạc hiệu quả cho bộ sạc
di động trong khi phải đối mặt với các yếu tố bất định xảy ra trong mạng như nút bị lỗi
hoặc nút mới được triển khai. Chúng tôi đề xuất một chiến lược sạc mới sử dụng phương
pháp học tăng cường sâu để hướng dẫn bộ sạc di động một cách linh hoạt. Phương pháp
của chúng tôi cho phép bộ sạc di động thích nghi với các thay đổi bất ngờ trong cấu trúc
mạng nhờ các cơ chế mới trong học máy. Các thử nghiệm cho thấy tính ưu việt của mô
hình của chúng tôi so với các phương pháp hiện tại trong việc kéo dài tuổi thọ mạng.

Các giải pháp đề xuất của chúng tôi cho hai vấn đề về vị trí nút trung gian và định
tuyến bộ sạc di động có thể kéo dài tuổi thọ của mạng và giảm chi phí bảo trì đáng kể.
Tiềm năng kết hợp hai kỹ thuật này trong mạng cảm biến sạc lại để tăng cường tính bền
vững và đáng tin cậy của mạng là một hướng nghiên cứu tiềm năng trong tương lai. Việc
áp dụng các giải pháp này, đặc biệt là những tiến bộ mới trong học tăng cường sâu, có thể
mở đường cho các mô hình mạng cảm biến hiệu quả hơn, giúp chúng ta giám sát và quản
lý tốt hơn các hệ thống khác nhau trong cuộc sống của chúng ta.
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Ẽtd energy requesting threshold.
a charging action.
eMC residual energy of the MC.
e residual energy of a sensor.
m number of critical targets.
n number of deployed sensors.
pBS base station.
pD depot.
p a sensor.
q a critical target.
rc communication range.
rs sensing range.
xD state of the depot.
xMC state of the mobile charger.
xSN state of a sensor.
x a state.

x



Chapter 1

Introduction

1.1 Motivation

In recent decades, the proliferation of electronic, communication, and computing technolo-
gies has fueled the rapid growth of the Internet of Things (IoT). Wireless Sensor Networks
(WSNs), originally developed for military applications, are now one of the fundamental
building blocks of the IoT, playing a crucial role in many civilian applications, including
home automation (Pirbhulal et al., 2016), air/earthquake monitoring (Alphonsa and Ravi,
2016, Kingsy Grace and Manju, 2019), smart agriculture (Sanjeevi et al., 2020), health
monitoring (Abdulkarem et al., 2020, Gardašević et al., 2020), smart cities (Csáji et al.,
2017). A WSN typically consists of a few to hundreds or thousands of spatially dispersed
and dedicated sensors to monitor specific targets or areas of interest. Each sensor node
(SN) is equipped with sensing, processing, and communication capabilities to convert an
analog signal of physical quantity into a digital signal and connect the node to the network.
The sensing data will be cooperatively transmitted through the wireless network to a base
station (BS), also known as a sink, where the data can be observed and analyzed.

Figure 1.1.1: Wireless sensor network architecture (source: Bahri (2018)).

Such a design offers WSNs the capability of being deployed on the fly and can operate
unattended, self-organizing without requiring any pre-existing infrastructure and with lit-
tle maintenance. The sensor nodes collaborate to achieve a common goal, such as sensing
and reporting temperature, humidity, or motion in a specific area. The communication
among the sensor nodes is usually achieved through multi-hop routing, where the data is
forwarded from node to node until it reaches the base station. Therefore, they can cover
large areas and gather data from numerous sources simultaneously, providing real-time

1



monitoring of the target area. Additionally, the use of WSNs can reduce labor and mainte-
nance costs since the SNs are equipped with low-cost, low-power batteries that can operate
for extended periods (Akyildiz et al., 2002).

However, the limited energy capacity of the sensors poses a crucial challenge for ensur-
ing continuous surveillance. Once the battery is fully consumed, the sensor can no longer
monitor the targets or relay the data, leading to network fragmentation and data loss in
some parts of the sensing field. Further, WSNs are often deployed in harsh and inacces-
sible environments for humans, such as underground tunnels and battlefields, making it
challenging to replace the sensors’ batteries. Hence, in most WSN applications, one of
the primary objectives is to maximize the network’s lifespan while keeping it functional
to ensure continuous data transmission and monitoring of the targets (Yetgin et al., 2017).

The last two decades observed a remarkable effort of researchers put into designing
new paradigms and protocols to prolong the network lifetime. The approaches can be
broadly classified into two main categories: sensor functioning optimization and energy
replenishment. Sensor functioning optimization aims to increase the efficiency of SNs
and reduce energy consumption through methods such as energy-efficient routing (Raj
et al., 2019), data aggregation (Goyal et al., 2019), and sensor scheduling (Haimour and
Abu-Sharkh, 2019), while energy replenishment focuses on providing external sources of
energy, such as energy harvesting (Adu-Manu et al., 2018, Shaikh and Zeadally, 2016) or
wireless charging (Kaswan et al., 2022, Qureshi et al., 2022), to the sensor nodes.

One advantage of optimizing sensor functioning is that it can extend network lifespan
without added hardware or infrastructure. These techniques can also save energy and be
customized for various applications. However, they may not suffice for high-throughput
needs that demand real-time data transmission, as this approach can only extend the sen-
sors’ lifetime for a certain amount of time. The battery will eventually be exhausted if no
external source supplies the sensors. Meanwhile, energy replenishment provides a con-
tinuous energy supply to sensors, possibly eliminating the need for battery replacements.
This technique works in remote or harsh environments but may require extra hardware or
infrastructure, such as energy harvesters or wireless chargers. Hardware costs and main-
tenance are also potential drawbacks in some applications.

The choice of technique to prolong the network lifetime in wireless sensor networks
depends on various factors, including application requirements, energy constraints, and
cost considerations. In this thesis, we study two problems; each is an emerging tech-
nique that has attracted significant attention in recent years for its potential to prolong the
network lifetime of WSNs. Specifically, we investigate (1) energy-efficient routing via
relay node placement and (2) adaptive routing strategies for the mobile charger in wireless
rechargeable sensor networks (WRSNs).

Energy-efficient routing via relay node placement. Relay node placement is an essen-
tial technique to optimize the functioning of WSNs. The idea is to deploy non-sensing
relay nodes (RNs) to increase the network’s capability and balance the energy consump-
tion among nodes. As RNs are often determined after deploying SNs, we can optimize
the placement of RNs to balance the energy consumption among nodes, which in turn pro-
longs the network lifetime. Past research efforts have focused on finding the minimum
number of RNs required to reduce deployment costs while ensuring QoS criteria such as
network coverage and connectivity. Recent works have also considered its potential to
elongate the network lifetime. However, striking a balance between these criteria remains
a significant challenge. To address this issue, we proposed a multi-objective approach
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to constructing an efficient communication structure (routing tree) with the least possible
number of RNs, thereby prolonging the network’s lifetime while ensuring its connectivity.

Adaptive charging strategies in WRSNs. Despite remarkable progress in recent years,
sensor function optimization and energy harvesting techniques cannot provide reliable ser-
vice for high-throughput applications requiring continuous surveillance. Recent advance-
ments in wireless charging provide a foundation for a novel scheme: wireless rechargeable
sensor networks (WRSNs). The idea is to employ a mobile charger (MC) with a high-
power battery to go around and charge the sensors wirelessly. The main challenge here is
to design a suitable charging strategy for themobile charger while accounting for the uncer-
tainties arising in the network. Existing charging schemes either make a strict assumption
about constant energy consumption rates or cannot adapt to unpredictable changes in the
network topology. To overcome this challenge, we propose a novel charging scheme that
uses a deep reinforcement learning (DRL) approach to guide the mobile charger adap-
tively. Our approach enables the mobile charger to adapt to spontaneous changes in the
network topology.

1.2 Thesis contributions

The main contributions of this thesis can be summarized as follows:

• In this study, we examine common approaches for prolonging the network lifetime
in wireless sensor networks, which can be classified into two main groups: sensor
functioning optimization and energy replenishment. We investigate one emerging
issue for each group, which can help in extending the network lifetime further.

• In Chapter 4, we investigate energy-efficient routing techniques by considering the
relay node placement as a multi-objective problem. We introduce a novel multi-
objective evolutionary algorithm that exploits problem-specific features to find a
Pareto-front that balances the trade-off between the number of relay nodes and the
network’s energy consumption. We conduct extensive experiments to demonstrate
the effectiveness of ourmethod and show that it provides a better trade-off compared
to existing algorithms. The paper summarizing the results is under review in the Soft
Computing journal (Bui et al., 2023).

• In Chapter 5, we consider the on-demand charging problem in WRSN settings. We
propose an adaptive charging scheme for the MC using deep reinforcement learning
to choose the next charging destination. Our proposed framework is flexible as it
can operate in a dynamic sensor network where the number of sensors might change
due to node failures or deployments. The experiments show the superiority of our
model compared to existing on-demand methods in prolonging the network lifetime.
The results were published at the IEEE MASS, 2022 (Bui et al., 2022).

1.3 Thesis outline

The thesis is structured as follows:

In Chapter 2, we provide an overview of the evolutionary and deep reinforcement
learning algorithms utilized in this study. We introduce the fundamental concepts and
principles of these algorithms to provide readers with the necessary background knowl-
edge for subsequent chapters.
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In Chapter 3, we present a comprehensive survey of the network lifetime problem
in WSNs. Our survey covers current state-of-the-art works in sensor functioning opti-
mization and energy replenishment approaches. We also provide an in-depth analysis of
energy-efficient routing approaches and adaptive charging schemes in WRSNs. This anal-
ysis will position our work better in the literature.

In Chapter 4, we delve into the relay node placement problem and present our multi-
objective framework for addressing this problem. We describe the problem statement and
the design of our algorithm, which takes into account problem-specific properties to find
a Pareto-front that balances the number of relay nodes and the network’s energy consump-
tion. We also conduct experiments to demonstrate the effectiveness of our approach and
compare it with existing algorithms.

In Chapter 5, we present our adaptive deep reinforcement learning framework for
scheduling charging trajectories for mobile chargers in WRSN settings. We describe the
design of our approach, which enables the mobile charger to choose the next charging
destination adaptively, based on the current energy levels of the sensors and the network’s
topology. We demonstrate the effectiveness of our model through extensive experiments
and compare it with existing on-demand charging methods.

Finally, in Chapter 5.5, we conclude the thesis by summarizing our contributions and
highlighting the key findings of our study, and then providing recommendations for future
works.

4



Chapter 2

Background

In this chapter, we present an overview of the evolutionary and deep reinforcement learn-
ing algorithms used in the study. The purpose of this chapter is to introduce readers to
the basic concepts and principles of these algorithms, which will be necessary for under-
standing the subsequent chapters. We introducemulti-objective optimization (MOO) prob-
lems and describe how evolutionary algorithms simulate the process of natural selection
to evolve optimal solutions to MOO problems in Section 2.1. We also explain how deep
reinforcement learning algorithms combine neural networks and reinforcement learning to
enable agents to learn from their experiences and improve their decision-making abilities
over time in Section 2.2.

2.1 (Multi-objective) Evolutionary Algorithms

2.1.1 Multi-objective optimization problems
Multi-objective optimization (MOO) is a branch of optimization that deals with problems
involving multiple conflicting objectives. In MOO, the goal is to find a set of solutions
that simultaneously optimize multiple objectives. These objectives often conflict with
each other, leading to no single solution being optimal for all objectives. Mathematically,
a multi-objective optimization problem can be formulated as

min
x∈X

(f1(x), f2(x), . . . , fm(x)) (2.1)

where fi : X → R is the ith objective function. As there are conflicting criteria, we first
need a definition of solution domination to compare between solutions.

Definition 2.1.1 (Solution domination). A solution x1 is said to dominate another solution
x2, denoted x1 ≻ x2, if x1 is no worse than x2 in all objectives and is strictly better in at
least one objective.

A solution x1 is said to be non-dominated if there is no other solution in the population
that dominates x1. The Pareto front help represents the set of non-dominated solutions. A
solution is Pareto optimal if there is no other solution that is better in all objectives. The
Pareto front can be mathematically formulated as follows. Let x ∈ X denote a solution
vector, where X is the feasible region. Let f(x) = [f1(x), f2(x), ..., fm(x)] denote the
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Figure 2.1.1: Pareto dominance (Source: Verma et al. (2021)).

vector ofm objective functions. Then, the Pareto front can be defined as:

P = {x ∈ X |∄x′ ∈ X such that f(x′) ≺ f(x)},

where f(x) ≺ f(x′) denotes that x′ dominates x, meaning that x′ is no worse than x in
all objectives and strictly better than x in at least one objective. Figure 2.1.1 shows an
example of the Pareto front. The Pareto front is a useful tool for decision-making in MOO
because it provides a set of trade-off solutions that decision-makers can choose from based
on their preferences.

2.1.2 Non-dominated sorting genetic algorithm
Multi-objective evolutionary algorithms (MOEAs) are a class of optimization algorithms
that are designed to tackle MOO problems. MOEAs are inspired by the process of natural
selection, where individuals with better fitness are more likely to survive and reproduce.
In MOEAs, candidate solutions are represented as individuals in a population, and the
fitness of each individual is evaluated based on multiple objective functions. The goal of
MOEAs is to find a set of Pareto optimal solutions.

Non-dominated Sorting Genetic Algorithm (NSGA) is one of the most popular MOO
algorithms that uses the genetic algorithm (GA) as a search method. NSGA-ii was first
introduced by Deb et al. (2002) as an improvement over the traditional GA for multi-
objective optimization problems. The core idea behind NSGA is to sort the population of
candidate solutions into several fronts based on their non-domination relationship. The
first front contains non-dominated solutions, and the second front contains solutions that
are dominated by solutions in the first front, and so on. By sorting the population into
fronts, NSGA is able to maintain a diverse set of Pareto optimal solutions.

Similar to the original genetic algorithm, NSGA uses two main genetic operators:
crossover and mutation. Crossover is a process of combining two parent solutions to gen-
erate a new offspring solution, while mutation is a process of introducing random changes
to a solution. NSGA uses tournament selection to choose parent solutions for crossover
and mutation. In each generation, NSGA performs non-dominated sorting to rank the
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Figure 2.1.2: Examples of the non-dominated sorting algorithm and crowding distance
calculation (Source Verma et al. (2021)).

population into fronts and assigns a crowding distance value to each solution in the front.
The crowding distance value measures how crowded a solution is in the front based on
the distance to its neighboring solutions. The crowding distance value of a solution xi in
front Fj is defined as:

crowding_distance(xi, Fj) =
m∑
k=1

fk(xi+1, Fj)− fk(xi−1, Fj)

fmaxk − fmink

, (2.2)

whereM is the number of objectives, fk(xi+1, Fj) and fk(xi−1, Fj) are the objective func-
tion values of the neighboring solutions of xi in front Fj along the k-th objective, and fmaxk

and fmink are the maximum and minimum objective function values, respectively, along
the k-th objective over the entire population. The crowding distance value ensures that so-
lutions that are diverse in the objective space are preserved in the population. NSGA then
selects the best solutions from the fronts based on their rank and crowding distance and
uses them to generate the next population. The selection operator ensures that solutions in
the first front are always selected, and solutions in the subsequent fronts are selected based
on their crowding distance value. We provide a pseudocode of NSGA-ii in Algorithm 1.
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Algorithm 1 Non-dominated Sorting Genetic Algorithm
Input: Population size N , number of generations T , crossover probability pc, mutation

probability pm, selection operator
1: Initialize population P0 with N individuals
2: Evaluate objective functions for each individual in P0

3: t← 0
4: while t < T do
5: Qt ← Create empty population
6: Rt ← Create empty population
7: P ′

t ← Perform tournament selection on Pt
8: for i← 1 to N by 2 do
9: Select parents xi, xi+1 from P ′

t using binary tournament selection
10: if Random number < pc then
11: yi, yi+1 ← Perform crossover on xi, xi+1

12: else
13: yi, yi+1 ← xi, xi+1

14: end if
15: for j ← i, i+ 1 do
16: if Random number < pm then
17: yj ← Perform mutation on yj
18: end if
19: Evaluate objective functions for yj
20: Qt ← Qt ∪ yj
21: end for
22: end for
23: Merge Pt and Qt into Rt

24: Perform non-dominated sorting on Rt to obtain fronts F1, F2, . . . , Fk
25: Set Pt+1 ← ∅, i← 1
26: while |Pt+1|+ |Fi| ≤ N do
27: Perform crowding distance assignment on Fi
28: Pt+1 ← Pt+1 ∪ Fi
29: i← i+ 1
30: end while
31: Sort remaining individuals in Fi by crowding distance
32: Add top (N − |Pt+1|) individuals in Fi to Pt+1

33: t← t+ 1
34: end while
35: Return best individual(s) found in final population PT

2.2 Deep Reinforcement Learning

2.2.1 Reinforcement learning and key concepts
Reinforcement learning (RL) is one of the fundamental paradigms of machine learning,
alongside supervised learning and unsupervised learning. It involves an agent that inter-
acts with an environment, receiving rewards for its actions. The objective of RL is to
enable the agent to learn a policy that maximizes the rewards it receives by iteratively try-
ing different strategies and receiving feedback. This way, the agent can adapt to changes
in the environment and improve its performance over time. Figure 5.3.1 illustrates the
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basic framework of reinforcement learning.

In RL problems, an agent interacts with an environment over a sequence of discrete
time steps. At each time step, the agent observes a state of the environment, takes action,
receives a reward, and transitions to a new state. The state of the environment at each time
step depends only on the previous state and action and not on any states or actions that
occurred before that.

RL problems are often represented asMarkov Decision Processes (MDPs), which are
characterized by a set of states S , actionsA, transition probabilities T , reward functionR,
and a discount factor γ. The state space is the set of all possible states that the environment
can be in. The action space is the set of all possible actions that the agent can take. The
transition probabilities describe the probability of transitioning from one state to another
when taking a particular action. The reward function maps each state-action pair to a
scalar reward. The discount factor is a parameter that determines the relative importance
of future rewards.

The goal of an RL agent in an MDP is to learn a policy π, which is a mapping from
states to actions, that maximizes the expected cumulative reward over time. The optimal
policy is the policy that maximizes the expected cumulative reward for all possible initial
states. To maximize the cumulative rewards, the agent needs to determine an appropriate
policy π(s) that selects the best action in each state, as well as a value function V (s) that
estimates the future rewards that will be obtained by following the policy. The interaction
between the agent and the environment involves a sequence of actions that cause the en-
vironment to change state. This sequence can be described as an episode that ends when
the environment reaches a terminal state. At each time step t ∈ 1, 2, ..., T , the agent ob-
serves the current state Xt, takes action At, and receives a reward Rt. The trajectory is a
sequence of random variables:

τ = {X0, A0, . . . , XT−1, AT−1, XT}.

The model gives all the necessary information about an environment: transition prob-
ability function T and reward function R. At state xt, the agent chooses an action at,
which leads to a new state xt+1 and receives a reward rt+1. This is a transition step
(xt, at, xt+1, rt+1). The probability of this transition is:

Pr(xt+1, rt+1|xt, at) = P[Xt+1 = xt+1, Rt+1 = rt+1|Xt = xt, At = at]. (2.3)

The policy π models the agent’s behavior at a state xt π(at|xt) = Pπ[At = at|Xt =
xt] and the return Gt is a accumulated discount rewards: Gt = Rt+1 + γRt+2 + ... =∑∞

k=0 γ
kRt+k+1. The discounting factor γ ∈ [0, 1] determines how much the agent cares

about rewards in the distant future relative to those in the immediate future. The value
function is the expected return of state s at time t, which can be calculated by:

Vπ(xt) = Eπ[Gt|Xt = xt]. (2.4)

Similarly, the Q-function measures the quality of a state-action pair:

Qπ(xt, at) = Eπ[Gt|Xt = xt, At = at]. (2.5)
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The following equation draws the connection between the value function and theQ-function.

Vπ(st) =
∑
at∈A

Qπ(xt, at)π(at|xt). (2.6)

In some cases, it is favorable to use the difference in return of a state-action pair compared
to the expected return of that state. We define that difference as the advantage value:

Aπ(xt, at) = Qπ(xt, at)− Vπ(xt). (2.7)

Optimal value and policy. The optimal value function produces the maximum return:

V ⋆(x) = max
π

Vπ(x), Q⋆(x, a) = max
π

Qπ(x, a). (2.8)

The optimal policy achieves optimal value functions:

π⋆ = argmax
π

Vπ(x) = argmax
π

Qπ(x, a). (2.9)

Thus, Vπ⋆(x) = V ⋆(x) and Qπ⋆(x, a) = Q⋆(x, a).

Bellman equations. The Bellman equation expresses the relationship between the value
of a state and the values of its successor states. It states that the value of a state is equal to
the immediate reward obtained by taking action in that state plus the discounted value of
the next state that the agent transitions to.

V (xt) = E[Rt+1 + γV (Xt+1)|Xt = xt], (2.10)

Q(xt, at) = E[Rt+1 + γEat∼π(·|st)Q(Xt+1, at)|Xt = xt, At = at]. (2.11)

Traditional RL methods use a combination of model-free techniques (e.g., Q-learning,
SARSA) and model-based approaches (e.g., dynamic programming) to learn optimal poli-
cies in environments with discrete and small state-action spaces.

Deep reinforcement learning (DRL) is a recent extension of RL that leverages deep
neural networks to enable learning in the high-dimensional state and action spaces. In
DRL, the agent learns to directly map raw sensory inputs (e.g., pixel values in images) to
actions without relying on hand-engineered features. This is achieved by combining deep
neural networks with traditional RL algorithms, such as Q-learning and policy gradient
methods. As this thesis uses actor-critic algorithms, which are highly based on policy
gradient methods, we provide background knowledge about policy gradient methods in
the following section.

2.2.2 Policy Gradient methods
Policy gradient methods are a class of reinforcement learning algorithms that aim to opti-
mize policies directly rather than computing a value function and then deriving a policy
from it. These methods have gained popularity recently due to their ability to handle
continuous action spaces and their success in achieving state-of-the-art results in various
applications, including game-playing, robotics, and natural language processing.

Policy gradient methods learn the policy directly with a parameterized function with
respect to θ, π(a|x; θ). We train the agent to maximize the expected return. Specifically,
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in continuous space with X1 as the initial starting state:

J(θ) = Vπθ(X1) = Eπθ [G1|X1]. (2.12)

We maximize the objective function J(θ) using the gradient ascent method. The gradient
of J can be computed using Policy Gradient Theorem Sutton and Barto (2018) as follows.

∇J(θ) = Eπθ [∇ ln π(a|x; θ)Qπ(x, a)]. (2.13)

Having the gradient, we can optimize policies directly using gradient ascent algorithms.
However, early policy gradient methods suffered from high variance, which made them
difficult to converge to optimal policies.

To address this issue, actor-critic methods combine a policy network (the actor) with a
value function network (the critic) to provide a more stable estimate of the policy gradient.
Specifically, two networks are maintained in actor-critic methods. One network is used
for learning value function, namely the critic, denoted Vψ, and another learns the mapping
between state and actions directly, known as the actor, denoted πθ. The critic is used to
criticize the actions made by the actor, and the actor adjusts its parameters in the direction
suggested by the critic. The gradient of the actor is now given by:

∇J(θ) = Eπθ [∇ ln π(a|x, θ)(Gt − Vψ(x))], (2.14)

where Vψ(s) is the estimated value of state s given by the critic. This algorithm is called
REINFORCE with a baseline.

2.2.3 Attentionmechanisms
Over the last decade, encoder-decoder architecture has emerged as one of the most promi-
nent deep learning architectures. Originally introduced to solve the problem of mapping
fixed-length input to output in sequence-to-sequence learning, the vanilla encoder-decoder
encodes a variable-input sequence to an internal, fixed-dimensional representation. This
representation is then used by an RNN-based decoder to produce a variable-length output
until a termination criterion is detected. However, a major drawback of this approach is
its inability to remember long sentences. To overcome this limitation, attention mecha-
nisms were introduced. Attention allows the decoder to use any of the encoder’s hidden
states instead of relying on the fixed-length representation produced by the encoder. This
is achieved by creating shortcuts that combine the entire input sequence into a context
vector, with weights assigned to represent how much attention is devoted to each input.
Mathematically, let us denote the encoder and decoder hidden states with (e1, e2, ..., en)
and (d1, d2, ..., dn) a context vector at decoding time i is given by:

ci =
n∑
j=1

aijej, (2.15)

where ai is an alignment of the input vector, which is calculated by:

aij = softmax(uij), j ∈ {1, 2, ..., n}, (2.16)

where:
uij = f(W1ej +W2di), j ∈ {1, 2, ..., n}. (2.17)
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This context vector c is later concatenated with decoder state d to make a prediction
or compute a hidden vector for the next steps of the recurrent model.

2.2.4 Pointingmechanism
The pointing mechanism is a technique first proposed in (Vinyals et al., 2015) to produce
discrete outputs that correspond to positions in the input. For example, in the combinato-
rial problem - Travel Sailing Problem, the solution is a permutation of the input positions.
In (Vinyals et al., 2015), the authors proposed a Pointer network which is an encoder-
decoder LSTM model. The input, including a sequence of the node’s position, is encoded
by an LSTM encoder. In the decoder, instead of blending the encoder hidden states ej
into a context vector c at each decoder step, a reduction of attention mechanism is used to
point to a member of the input sequence to be selected as the output:

uij = f(W1ej +W2di), j ∈ {1, 2, ..., n}, (2.18)
aij = softmax(ui), j ∈ {1, 2, ..., n}, (2.19)

where aij is considered as the probability to select input j in the decoder step i. The node
with the highest probability is chosen to be visited next. The procedure is iteratively re-
peated to obtain the final solution.
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Chapter 3

Literature Review

3.1 Network lifetime inWSNs

Awireless sensor network (WSN) is comprised of several low-cost, low-power SNs, rang-
ing from a few to thousands in number, that connect with each other through a wireless
network. Each SN is composed of four primary components: (1) a sensor unit that con-
verts the physical quantity’s analog signal into a digital signal, (2) a preprocessing unit
that enables computational and storage capabilities, (3) a transceiver unit that connects the
node to the network, and (4) a power unit, typically an electrochemical battery (Akyildiz
et al., 2002). Figure 3.1.1 provides a simplified diagram of the sensor node architecture.

Figure 3.1.1: A block diagram of the architecture of the sensor node in the WSN.

Sensor nodes are generally low-cost, resulting in a battery with a low capacity and
usually non-renewable. Therefore, extending the network’s lifetime is a crucial factor
that determines the overall efficiency and effectiveness of these networks. The network
lifetime is generally defined as the time until either coverage or connectivity is lost (Zhao
and Gurusamy, 2008). Numerous efforts have been dedicated to extending the lifespan of
wireless sensor networks (WSNs), which can be classified into two main groups: sensor
functioning optimization and energy replenishment.

Sensor functioning optimization focuses on enhancing the efficiency of sensor nodes
while reducing their energy consumption. Various methods have been proposed in this
area, such as data reduction, which involves removing redundant or unnecessary data to
reduce the amount of information transmitted and, consequently, the energy consump-
tion (Goyal et al., 2019). Another approach is sleep/wakeup schemes, which enable sen-
sors to alternate between sleep and active modes based on predefined schedules or events,
thereby reducing energy consumption during idle periods (Haimour andAbu-Sharkh, 2019).
Additionally, energy-efficient routing protocols have been developed to minimize energy
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consumption by reducing the number of hops between nodes and selecting paths with low
energy costs (Raj et al., 2019).

These above methods have the advantage of being able to prolong the network lifetime
without requiring additional hardware or infrastructure and can be implemented at the
software level. They also have the potential to achieve significant energy savings and
can be tailored to suit different application requirements. However, these techniques may
not be sufficient for high-throughput applications that require real-time or continuous data
transmission, as this approach can only extend the sensors’ lifetime for a certain amount of
time. The battery will eventually be exhausted if no external source supplies the sensors.

On the other hand, energy replenishment aims to provide external sources of energy
to the sensor nodes to extend their lifetime. One promising approach is energy harvesting,
which involves converting ambient energy from the environment, such as solar, thermal,
or kinetic energy, into electrical energy to power the sensors (Adu-Manu et al., 2018).
Nevertheless, this technique dramatically depends on an ambient source that is usually
unstable and uncontrollable. Another approach is wireless charging, which involves wire-
lessly transmitting energy to the sensors using electromagnetic waves or magnetic reso-
nance. The idea is to employ a (or multi-) mobile charger (MC), which is equipped with a
high-capacity battery and a transmission coil, to travel around the sensing field and charge
the sensors wirelessly (Qureshi et al., 2022).

Energy replenishment techniques can provide a continuous supply of energy to the
sensor nodes without the need for battery replacements. They also have the advantage of
being able to operate in remote or harsh environments where traditional power sources
may not be available. However, these techniques may require additional hardware and
infrastructure, such as energy harvesters or wireless chargers. Moreover, the cost and
maintenance of such hardware and infrastructure may be a concern in some applications.

In the following sections, we focus on two problems of energy-efficient routing via
relay node placement and charging policies for WRSNs.

3.2 Energy-efficient routing via relay node placement

Energy-efficient routing is a well-established research area that aims to reduce energy con-
sumption while maintaining reliable data delivery (Behera et al., 2022, Raj et al., 2019).
Traditional approaches mostly focused on the existing structure of the WSNs to determine
the routing protocols. Popular ones include hierarchical routing protocols, data-centric
routing protocols, and location-based routing protocols. Hierarchical routing protocols
like LEACH(Heinzelman et al., 2000) divide the network into clusters to minimize energy
consumption, while data-centric routing protocols like Directed Diffusion (Intanagonwi-
wat et al., 2003) route data based on the content of the message. Location-based routing
protocols like GRP (Karp and Kung, 2000) use location information to make routing deci-
sions. However, the effectiveness of these traditional routing protocols can be limited by
the existing network topology and node density.

In recent years, there has been a growing interest in relay node placement strategies
to enhance energy consumption in wireless sensor networks (Verma et al., 2015). The
idea is to deploy additional non-sensing relay nodes to increase the network’s capability
and balance the energy consumption among nodes. Originally, relay node placement is
designed to enhance to QoS criteria of WSNs, such as network connectivity and fault
tolerance (Hanh et al., 2019, Lee et al., 2015, Ma et al., 2015, Sheikhi et al., 2021). Re-
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cently, relay node placement has been considered more for its potential to help balance
the energy consumption among nodes, which in turn elongates the network lifetime (Tam
et al., 2020). Tam et al. (2020) have considered two objectives: minimizing the number
of relay nodes and minimizing the maximum node energy consumption to prolong the
network lifetime. They proposed a weighted-sum approach to finding a routing tree that
maximizes the network’s lifetime with minimum additional relay nodes. Although their
work is limited to 2-hop WSNs and employs only the weighted-sum algorithm, it shows
the potential of applying relay node replacement in prolonging the network lifetime. This
thesis aims the enhance the existing results of Tam et al. (2020) to multi-hop networks
with a novel objective-oriented multi-objective algorithm. We will discuss this problem
in detail in Chapter 4.

3.3 Charging policies inWRSNs

(a) Offline charging scheme (b) Online charging scheme

Figure 3.3.1: A comparison of offline and online charging scheme.

Wireless Rechargeable Sensor Networks (WRSNs) are a subset ofWSNs that use wire-
less charging technology to replenish the sensor nodes’ energy. This technology provides
a promising solution to one of the most significant challenges facing WSNs, which is the
limited energy capacity of the sensors. WRSNs consist of a mobile charger that traverses
the sensing field and wirelessly charges the sensors that need energy. This approach en-
sures continuous operation of the WSN without requiring manual battery replacements,
making it ideal for remote or harsh environments where accessing the sensor nodes is dif-
ficult. However, constructing an efficient charging policy for mobile chargers (MCs) to
meet the dynamic charging requirements of the sensors is one of the most critical chal-
lenges in WRSNs. Various proposals have been put forward to address this challenge, and
they can be broadly classified into two main categories: offline charging schemes and
online charging schemes (Figure 3.3.1).

Offline charging scheme. Offline charging schemes aim to optimize the charging pol-
icy before the charging process begins, usually by considering the expected workload, the
capacity of the MCs, as well as the energy demand of the sensors. This approach enables
the MC to charge the sensors with the optimal charging schedule, minimizing the over-
all energy consumption and extending the network lifetime. Lyu et al. (2019) propose
a periodic charging planning for mobile Wireless Charging Equipment with limited trav-
eling energy. They propose a Hybrid Particle Swarm Optimization Genetic Algorithm
(HPSOGA) because of the NP-hardness of the problem. In (Jiang et al., 2017), the au-
thors jointly consider charging tour planning and MC depot positioning for large-scale
WSNs. Their method consists of charging tour planning, candidate depot identification
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and reduction, depot deployment, and charging tour assignment. The charging scheme
also considers the association between the MC charging cycle and the sensor nodes’ life-
time. Ma et al. (2018b) aim tominimize the sensor energy expiration time and the charging
tour length of the mobile charger. They develop an approximation algorithm for the charg-
ing utility maximization problem if the energy consumption of the mobile charger on its
charging tour is negligible and an efficient heuristic through a non-trivial reduction from
a length-constrained utility maximization problem otherwise. However, this approach re-
quires a strict assumption about the constant energy consumption rate of sensor nodes,
which is unrealistic in practice.

Online charging scheme. Online charging schemes determine the optimal charging pol-
icy while the charging process is ongoing, usually by monitoring the energy levels of
the sensors and the remaining energy of the MC. Online charging schemes are generally
more flexible and adaptive, as they can adjust the charging policy in response to changing
network conditions. In the on-demand charging problem, sensor nodes request charging
from the MC when their energy is depleted or falls under a predefined threshold. The
MC maintains a pool of these requests and determines the next sensor to charge among
the requested ones in the pool. The NJNP (He et al., 2013) algorithm charges the closest
sensor node in the queue, while DWDP (Lin et al., 2019) uses double warning thresholds
and double preemption to optimize charging priorities and recharge deadlines. ESync (Fu
et al., 2015) constructs nested TSP tours to reduce travel distance and charging delay, and
TSCA (Lin et al., 2017) minimizes the number of failed nodes while maximizing energy
efficiency. Kaswan et al. (2018) present a Linear Programming (LP) formulation for the
on-demand scheduling problem and then introduce an efficient solution based on a gravi-
tational search algorithm (GSA) to tackle the problem. PA and INMA (Zhu et al., 2018)
are two efficient online charging algorithms that first consider dynamic energy consump-
tion rates based on their history statistics and real-time energy consumption. Recently,
reinforcement learning-based algorithms (Cao et al., 2021, La et al., 2020) have also been
considered for designing on-demand charging schemes. However, a common drawback
of the above on-demand algorithms is the dependence on the chosen threshold for the
charging requests, making it sensitive to that setting. We propose in this thesis a novel
adaptive charging scheme by eliminating the on-demand charging request and using deep
reinforcement learning to train the policy. The detail will be discussed in Chapter 5.
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Chapter 4

An Evolutionary Algorithm for Optimal
Node Placement

This chapter investigates the energy-efficient routing problem in WSNs through relay
node placement. Existing approaches solely focus on minimizing the number of used
relay nodes without considering energy consumption among nodes. We propose a relay
node placement approach in multi-hop wireless sensor networks with two objectives: min-
imizing the number of used relay nodes and minimizing the maximum node energy con-
sumption. The first objective is to restrict the deployment costs, while the second is to
balance the energy consumption among nodes, which in turn extends the network’s life-
time. To improve the network’s reliability, we also consider a hop count bound, which
acts as a delay constraint for transmitting packages. To solve our problem, we propose a
novel objective-oriented multi-objective evolutionary algorithm (MOEAs) that leverages
the problem-specific properties to improve the algorithm’s convergence rate. Simulation
results on 3D datasets show that our algorithm outperforms existing algorithms in all mea-
sured metrics.

4.1 Introduction

Relay node placement with a hop count bound is an emerging technique to enhance con-
nectivity, lifetime, and reliability in multi-hop wireless sensor networks (Farsi et al., 2019,
Lin et al., 2020, Priyadarshi et al., 2020, Verma et al., 2015). The key idea is to deploy
non-sensing RNs to increase the network’s capability and balance the energy consump-
tion among nodes, enhancing the connectivity, lifetime, and fault tolerance of the WSN.
Besides, deploying additional RNs could also shorten a long-hop transmission, which is
much more expensive than multiple short-hops (Haenggi and Puccinelli, 2005).

However, optimizing the placement of RNs is a challenging task as it often involves
multiple conflicting criteria. There are two variants of relay node placement problems in
the literature: unconstrained and constrained problems. In the former problem, relay nodes
can be placed anywhere in the terrain. In contrast, to avoid unrealistic relay deployments
due to physical constraints, the latter restricts the position of the additional relay nodes
at certain locations, which are determined in advance. However, both typically form NP-
hard problems (Lloyd and Xue, 2006, Misra et al., 2009); thus, in practical settings, it is
hard to obtain an optimal solution in a suitable amount of time.

Numerous works have been carried out to approximate the placement of RNs while
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ensuring several constraints of connectivity and fault tolerance. Ma et al. (2015) studied
the constrained relay node placement in WSNs and proposed a connectivity-aware local
search algorithm to find the minimum number of relay nodes so each sensor is covered by
at least one relay node. Lee et al. (2015) assured the fault tolerance of a partitionedWSNby
establishing a bi-connected inter-partition topology while still deploying the least count of
relay nodes. Bagaa et al. (2017) leveraged a Rayleigh block-fading channel and weighted
communication graph to construct a routing tree with a minimum number of additional
relay nodes. Hanh et al. (2019) introduced a multi-objective problem that simultaneously
considers the target coverage, connectivity, and fault tolerance of WSNs. Sheikhi et al.
(2021) proposed the two phases approach to provide multi-path routing and fault-tolerance
with higher network connectivity in heterogeneous WSNs.

Most of the above works consider multi-hop communication to ensure connectivity
and prevent long-hop transmission. However, unlimited hop communication could in-
crease the network’s latency and reduce its reliability Bhattacharya and Kumar (2014).
As it is difficult to measure network latency before node deployments, a hop count bound
is often used as a surrogate constraint for network latency (Bhattacharya and Kumar, 2014,
Liang et al., 2019, Ma et al., 2017, 2018a). Bhattacharya and Kumar (2014) first studied a
constrained relay placement problem with hop count bound and showed its NP-hardness.
They then proposed a polynomial time approximation algorithm for the problem. Ma et al.
(2017, 2018a) also used the hop count to measure delay and reliability and formulated the
2-connected hop-constrained relay node placement (HCRNP) problem. Two approxima-
tion algorithms are proposed to solve this problem. Liang et al. (2019) later conducted
extensive real-world deployments of WSNs using existing algorithms and then proposed
a Set-Covering-based Algorithm (SCA) to ensure the quality of communication in the
network with a hop count bound as a delay constraint.

Despite the promising results, a drawback of the aforementioned works is the lack of
considering the energy consumption of nodes in the placement. The energy consumption
of the nodes in a WSN is well-known to be imbalanced since it depends heavily on the
number of relayed packets and the distance to the next node in the network topology (Gu-
leria and Verma, 2019). Thus, balancing the load among nodes is essential to prolong the
network’s lifetime. However, the network’s lifetime and the cost of deploying additional
relay nodes are two conflicting criteria. Deploying more relay nodes typically increases
the network’s capability and provides more possibilities for load balancing but induces
more cost in the deployment. Recently, Tam et al. (2020) first considered these two ob-
jectives in their design. They proposed a weighted-sum approach to finding a routing tree
that maximizes the network lifetime with minimum additional relay nodes. However, they
only consider the 2-hop WSNs, which are only suitable for small networks. Additionally,
the weighted-sum strategy must make certain assumptions when assigning weight values
regarding how ‘important’ a criterion is compared to the other.

To overcome these issues, we introduce a novel problem, called Node-Energy Bottle-
neck Problem (NEBP), which considers both objectives: minimize the number of relays
used and maximize the network lifetime in a multi-hop setting with a hop count bound.
This paper aims to establish a communication structure (routing tree) that has balance com-
munication among nodes with minimal additional RNs. The main difference compared
to Tam et al. (2020) is that we consider a multi-hop scheme with a delay constraint by lim-
iting the maximum number of communication hops for each SN towards BS. Moreover,
we focus instead on using MOEAs to solve two objectives simultaneously.

MOEAs are favorable for their ability to provide Pareto fronts of non-dominated solu-
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tions in the objective function space. These Pareto fronts endow decision-makers to select
a solution that fits them best. In evolutionary-based approaches, a population of candidate
solutions is maintained and evolved toward better solutions. There are two main types of
representation of an individual in the population: indirect and direct.

In an indirect representation, the candidate solutions are mapped to a different space
where standard crossover and mutation operators can be applied. As we are focusing
on constructing a routing tree, a standard approach could use Prufer encoding (Prüfer,
1918), link and node biased (Palmer and Kershenbaum, 1994), or Network random keys
(NetKeys) (Rothlauf et al., 2002) as the solution encoder. Recently, Prakash et al. (2020)
leveraged a permutation encoding with a heuristic decoder to propose a hybrid multi-
objective evolutionary algorithm (HMOEA) to find a minimal spanning tree with a min-
imum diameter. The advantage of indirect representation is that we can adopt standard
operators directly on the solution representaiton (Nayyar et al., 2018). However, most of
these representations suffer from the low locality (small changes in the code can lead to
large changes in the decoded tree) (Prüfer, 1918), or infeasible and redundant representa-
tions (Prakash et al., 2020, Rothlauf et al., 2002).

On the other hand, direct representations can use a simple encoding method such
as edge sets encoding (Raidl and Julstrom, 2003) and then perform a problem-specific
crossover and mutation directly on phenotypes to create new offspring (Rothlauf, 2006).
The main advantage of this scheme is the ability to apply a heuristic to guide search opera-
tors Hao and Liu (2017). Therefore, in this paper, we use edge sets encoding to represent
the solutions and then propose the novel crossover and mutation operators to solve the
Node-Energy Bottleneck problem in multi-hop wireless sensor networks (NEBP).

We outline the contributions of this chapter as follows.

• First, we introduce a novel problem called the Node-Energy Bottleneck (NEBP),
which considers multi-hop networks with a hop count bound. We aim to minimize
two objectives: i) the number of used relay nodes; ii) the maximum node energy
consumption to prolong the network lifetime.

• Secondly, we propose Guided Prim NGSA-II (GPrim) to solve the proposed prob-
lem. The novelties of the proposed GPrim can be summarized as follows: i) accord-
ing to the problem-specific characteristics, encoding-based edge-set and decoding
methodologies are developed to represent the solution space; ii) we leverage the
problem’s energy property to develop a heuristic Prim-based crossover and two mu-
tations including energy-oriented mutation and relay-oriented mutation to improve
the convergence rate of the algorithm.

• The proposed algorithm is validated against different encoding methods, including
Permutation, Prufer code, NetKeys, and Edge sets. The comparison is delivered on
various metrics showing that our algorithm outperforms existing approaches by a
significant margin.

4.2 Problem statement

4.2.1 Network structure
We consider the deployment of a wireless underground sensor network as in Tam et al.
(2020), with a multi-hop network structure as described in Wu and Liu (2013). A network
includes a base station (BS), a set of SNs, and a set of SNs deployed in three-dimensional
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terrains. We consider two types of connection: relay nodes - base station and sensor nodes -
sensor nodes/relay nodes. Sensing data is gathered by SNs and sent to a BS through a relay
node or other sensors. The data transmitted to relay nodes can only be forwarded directly
to the base station rather than other sensors or relays. We assume the sensor network is
static, meaning SNs have already been deployed, and a finite set of potential positions for
SNs is known in advance. The base station is a sink node deployed at the central terrain
with an unlimited power supply while relay nodes (RNs) and SNs have the same initial
energy, which cannot be replenished.

4.2.2 Energy consumptionmodel
Numerous energy dissipation models in WSNs are studied with different assumptions. In
this work, we use the same energy model as in Gawade and Nalbalwar (2016), which ac-
counts for the dissipated energy at both the receiver and transmitter during a transmission.
The free space model (d2 power loss) is used for proximal transmissions, and the multi-
path fading model (d4 power loss) is considered for large-distance transmissions. Thus
the energy dissipated by the transmitter for transmitting an l-bit packet to a distance d is
given by:

Ẽt(d) =


lϵelec + lϵfsd

2 if d ≤ d0 ≤ rc,

lϵelec + lϵmpd
4 if d0 < d ≤ rc,

∞ if rc < d,

(4.1)

where d0 =
√

ϵfs
ϵmp

is the distance threshold for swapping amplification models and rc
indicates the range with which a node can communicate. In other words, no connection
will be established among the nodes out of this range.

The energy consumption of the receiver to receive an l-bit packet is calculated as fol-
lows:

Ẽr = lϵelec. (4.2)

The dissipated energy of a node receiving η packets and transmitting them to the parent
node is calculated by the following formula

Ẽ(η, ζ, d) = ηẼr + (η + ζ)Ẽt(d), (4.3)

where Ẽt(d), Ẽr are calculated as in Equation 4.1 and 4.2, respectively. The argument ζ
equals 1 if the node is a sensor node, and 0 otherwise. The argument d is the transmission
distance. The network parameters shown in Table 4.2.1 are set as in Wu and Liu (2013).

Table 4.2.1: Network parameters.

Parameter Value

ϵelec 50nJ/bit
ϵfs 10pJ/bit/m2

ϵmp 0.0013pJ/bit/m4

ϵDA 5pJ/bit
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4.2.3 Problem formulation
We consider a wireless sensor network including a set of deployed sensor node S =
{s1, s2, ..., sns}, a set of potential relay nodes R = {r1, r2, ..., rnr} and a base station de-
noted as s0. The position of each node is represented as a single point in a 3D space that is
interpolated from the digital elevation model (DEM) model (Florinsky, 2016)). The com-
munication between two nodes can only be established if the Euclidean distance between
them does not exceed the communication range rc.

We want to find a routing tree that balances the energy consumption among nodes
with a minimal number of deployed RNs. Here, we consider the max-hop constraint ℏ
that limits the maximum number of communication hops for each SN towards BS (depth
of the routing tree). We denote the problem as the Node Energy Bottleneck problem with
hop count bound. The formal formulation below models the desired structure as a Steiner
tree (Hwang and Richards, 1992).

Definition 4.2.1 (Steiner tree). Given an undirected graphG = (V,E) and a set of termi-
nal nodesN ⊆ V . A tree T = (VT , ET ) is called a Steiner tree if it contains no cycles and
spans all terminal nodes, N ⊆ VT ⊆ V . The set of nodes VT \N is called Steiner nodes.

Input:

• G = (V,E) is an undirected graph, where V = S ∪ R ∪ {s0} is set of vertices in
the graph, S is set of sensor nodes, R is set of relays, and s0 corresponds to base
station.

• N = S ∪ {s0} denotes the set of terminal nodes.

• rc ∈ R+ is the communication range.

• d : V × V → R+ is the distance function. An edge e = (u, v) ∈ E only if
d(u, v) ≤ r0.

• ℏ ∈ N+: the max-hop constraint.

Constraints:

• Every selected RNs (Steiner points) directly connect to base station s0 (denoted as
node 0)

(s0, v) ∈ ET ∀v ∈ VT ∩R.

• The unique path from a specified root s0 to any other node has no more than ℏ hops
(edges)

len(s0, v) ≤ ℏ ∀v ∈ VT ,

where len(u, v) denotes the length of the unique path between two nodes u and v.

Output: A valid solution is a Steiner tree T = (VT , ET ) that spans the set of terminal
nodes N = S ∪ {s0} and satisfies the above constraints.

Figure 4.2.1 shows an example of a network with three relays and six sensors.

Objectives: The Node-Energy Bottleneck problem in multi-hop wireless sensor net-
works (NEBP) seeks a Steiner tree T = (VT , ET ) in the valid output space that optimizes
two following objectives:
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Figure 4.2.1: An example of a network with 3 relays, 6 sensors, and max-hop constraint
is 3.

• Minimize the number of selected SNs (Steiner node):

|VT \N | → min . (4.4)

• Minimize the maximum energy consumption of each node:

max
v∈VT \{s0}

Ẽv(η, ζv, d)→ min, (4.5)

where Ẽv is calculated as Equation 4.3.

4.3 Proposedmethod

We propose a phenotype-based multi-objective evolutionary algorithm (MOEA) named
Guided Prim NGSA-II (GPrim) to solve the NEBP. In this scheme, the population is
first initialized by a random-tree algorithm in which the candidate solutions are encoded
by the edge sets encoding method. Then, we apply the NSGA-II algorithm (Deb et al.,
2002) to maintain and evolve the population towards better solutions using the problem-
specific search operators. We leverage the problem’s energy property to develop a heuris-
tic Prim-based crossover and two objective-orientedmutations to reduce ineffectivemoves
from standard search operators. The specifics of solution representation, initialization,
crossover, and mutation are described below.

4.3.1 Solution representation
Although a direct representation needs no mapping between the phenotypic and genotypic
space, a data structure is still necessary for processing Li (2001), Rothlauf (2006). We use
edge-set encoding on this problem for its simplicity. This encoding can act as the basis
for evaluating the solution or be converted to an adjacency list in linear time. As we want
to find a Steiner Tree that can connect all SNs to the BS, the number of vertices in the
solutions is not consistent. For simplicity, we initialize solutions with the connections
from the BS to every RN, and this structure is maintained in all candidate solutions in the
population. The RNs with no connection to any SNs are later removed from the output
structure by the decoder.
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4.3.2 Initialization
In the hop-constrained spanning tree problem, the number of hops in a rooted tree (h) is
bounded by its diameter (d):

d/2 ≤ h ≤ d.

Therefore, we leverage PrimRST (Raidl and Julstrom, 2003) to initialize the candidate
solutions, as PrimRST tends to generate low-diameter trees which aremore likely to satisfy
the max-hop constraint. The PrimRST algorithm uses Prim’s scheme to greedily create
a spanning tree from a start node by adding an adjacent node at random, regardless of
its weight. Moreover, we adapt PrimRST to consider max-hop constraint by maintaining
nodes’ depth while creating a tree. We call this algorithm as HCPrimRST (Algorithm 2).
Applying HCPrimRST with max-hop constraint may lead to an invalid, non-connected
structure. The initialization is thus divided into two phases. The first phase initializes
edges T = {(0, v) ∈ E|v ∈ R} and runs the algorithm with max-hop constraint; and in
the second phase, we relax its constraint and continue to build the tree obtained from the
first phase to get a valid connected tree.

Algorithm 2 HCPrimRST
Input: The set of initialized edges T , set of vertices V , set of potential edgesE, max-hop
constraint ℏ.

Output: The set of used edges T .
C ← {u, v|(u, v) ∈ T} # set of connected nodes
d← depth of vertices in partial tree T # by dfs from root 0
A← {(u, v) ∈ E|u ∈ C, v /∈ C} # eligible edges
while A ̸= ∅ do
Choose (u, v) ∈ A at random
A← A \ (u, v)
if v /∈ C and du < ℏ then
T ← T ∪ (u, v)
C ← C ∪ {v}
A← A ∪ {(v, w) ∈ E|w /∈ C} # add v’s adjacency to A
dv ← du + 1

end if
end while

4.3.3 Crossover operator

Figure 4.3.1: An example of calculating maximum number of children. Dashed lines
denotes potential edges

23



For crossover, a naive approach is to apply the HCPrimRST algorithm directly to create an
offspring Tcr from a combined graph Gcr = (V,ET1 ∪ET2), where T1, T2 are the parental
trees. However, due to its random nature, this algorithm might create many infeasible
or ineffective offsprings. We propose an energy-aware modification of the HCPrimRST-
based crossover to prioritize the offspring’s structures that use less energy power than their
parents while maintaining the diversity of the offspring.

Following the energy model (4.3), we notice that the dissipated power of a node is af-
fected by three factors, including the number of packets it carries (ηu) (descendant nodes),
whether it is a sensor or relay (ζu ∈ {0, 1}), and the distance of the transmit-receive pair
to its parent (ξ(d)):

Ẽu = ηu(Ẽr + Ẽt(d)) + ζuẼt(d) (4.6)

⇔ ηu =
Ẽu − ζuẼt(d)
Ẽr + Ẽt(d)

. (4.7)

Equation (4.7) suggests that if we know the maximum energy a node can use and its
parent, we also know the maximum number of packets it can carry. Let us assume that
the network has an energy limit of Ẽmax. Before adding an edge (u, v) where u ∈ C, v /∈
C, du < ℏ, we can check if this causes the network to exceed the energy limit by tracking
the number of descendants that a node in the partial tree can receive.

We denote Ψu as the incumbent number of descendants a node can carry without ex-
ceeding Ẽmax and Pu as a set of u’s parent nodes and itself. An edge (u, v) is considered
valid if Ψu > 0. Connecting (u, v) reduces the capacity of the nodes in Pu:

Ψt = Ψt − 1 ∀t ∈ Pu. (4.8)

Thus, Ψv is updated using the following function:

Ψv = min {ηv,Ψu}, (4.9)

where ηv is calculated as Equation (4.7) with the energy limit Ẽmax. For example, with
the graph presented in Figure 4.3.1, two potential edges connect node 9 to the partial tree:
(7, 9) and (8, 9). However, asΨ7 = 0, connecting the edge (7, 9) inevitably causes one of
the parents of node 7 to be exhausted. Thus, the edge (8, 9) is prioritized in this case. Note
that adding a child affects all parent nodes. Thus, the maximum number of descendants
of a node does not exceed its parents; that is

Ψu = min
t∈Pu

Ψt. (4.10)

To reduce computation, an update of node u (Equation 4.10) is only executed when it is
necessary. In the example in Figure 4.3.1, Ψ4 should be updated to 2. However, it is
unnecessary until another edge of node 4 is involved. The operator can be done in O(nℏ).

4.3.4 Mutation operators
One of the most widely used mutations for tree-based problems is edge insertion muta-
tion (Raidl, 2000). The tree is mutated by randomly adding a non-tree edge (creating a
cycle) and then randomly deleting a tree edge from the created cycle (removing the cycle).
This mutation can be applied to most tree-based problems. However, exploring neighbors
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randomlymay producemany invalid or lower-quality solutions, especially when approach-
ing local optimal solutions.

We propose two problem-specific mutations that improve the algorithm’s convergence
speed. The first mutation targets energy usage, while the second aims to reduce the number
of used relays. These mutations are used simultaneously and chosen randomly for each
offspring with predefined probabilities.

Figure 4.3.2: An example of the energy-oriented mutation. The dashed blue lines denote
the potential added edges.

Energy-oriented mutation Let us look closer into the edge insertion mutation. A mu-
tated solution can be represented by its direct parent and a pair of added edge e+ =
(u+, v+) and deleted edge e− = (u−, v−). Both edges are chosen at random, most of
which lead to a worse solution or violate the max-hop constraint. However, we can lever-
age each node’s maximum number of descendants Ψ (Section 4.3.3) to find and prioritize
pairs of edges that ensure a better solution.

Let us denote ϕ as the node using the most energy. Recall that the energy usage of ϕ
is composed of two factors: the number of descendants of ϕ and the distance between ϕ
and its parent. Reducing the maximum energy usage of the network requires one of two
factors to decrease. Consider the subtree Tϕ = (Vϕ, Eϕ), which includes ϕ and its children.
We define potential added edge (u, v) as the edge that connects a part of subtree Tϕ to the
remaining subtree T \ Tϕ and satisfies the following constraints:

u ∈ Vϕ, v ∈ V \ Vϕ, ηu ≤ Ψv, hu + dv + 1 ≤ ℏ,

where du, hu, ηu is depth (from root to u), maximum hop (from u to farthest leaf) and the
number of children of node u, respectively. Also, we refer to pu as the parent of u in the
parental tree. Then, replacing the edge (u, pu) by (u, v) ensures that the newly constructed
tree satisfies the max-hop constraint and has lower energy usage in node ϕ. Figure 4.3.2
shows an example of this process.

When combining the above heuristic with edge insertion mutation, we find a set of
potential edge pairs in the tree. If this set is not empty, we randomly choose one pair and
create a mutated tree. Otherwise, the original edge insertion mutation is used to complete
the mutation operator. Algorithm 3 presents this energy-oriented mutation procedure. The
complexity of this mutation is O(max(nℏ,m)).
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Figure 4.3.3: An example of the relay-oriented mutation

Algorithm 3 The energy-oriented mutation algorithm
Input: Edge-set of parental tree T , set of vertices V , set of potential edges E, energy
limit Ẽmax, max-hop constraint ℏ.

Output: The set of edges in the offspring T .
Find a node that uses most energy ϕ in parental tree T
Run a depth-first search in parental tree T to calculate the set of potential edges F =
{(u, v) ∈ E|u ∈ Vϕ ∧ v ∈ (V \ Vϕ) ∧ ηu ≤ Ψv ∧ hu + dv + 1 ≤ ℏ}
if F ̸= ∅ then
Choose an edge (uϕ, vϕ) ∈ F at random
T ← T \ (uϕ, puϕ) # puϕ is parent of uϕ in parental tree
T ← T ∪ (uϕ, vϕ)

else
Choose an edge (u+, v+) ∈ E \ T at random
T ← T ∪ (u+, v+)
Find a set of edges C in the created cycle
Choose an edge (u−, v−) ∈ C
T ← T \ (u−, v−)

end if

Relay-oriented mutation Due to the tendency toward star-like structures, PrimRST and
HCPrimRST uses more relays on average than KruskalRST and RandWalkRST (Figure
4.3.4). In comparison, both crossover and energy-oriented mutation focus on optimizing
the energy objective. The optimization of the number used relays depends on the distribu-
tion of the random-tree algorithm implemented in the initialization and crossover operator.
We propose a more direct mutation strategy for reducing the number of used relays: one
random relay from the parental tree is disabled, while its children (sensors) are connected
to the remaining relays. The HCPrimRST algorithm is first applied with an energy limit
as in the crossover operator. Constraints are later relaxed to ensure that all sensors are
connected. An example of this mutation is shown in Figure 4.3.3, and a pseudocode is
provided in Algorithm 4. This mutation can be done in O(nℏ).
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Figure 4.3.4: The distribution the number of used relays generated by different random-
tree algorithms on a graph with 100 relays and 100 sensors.

Algorithm 4 The relay-oriented mutation algorithm
Input: Edge-set of parental tree T , set of vertices V , set of potential edges E, energy

limit Ẽmax, max-hop constraint ℏ.
Output: The set of edges in the offspring T .
1: Find a set of used relays Φ in the parental tree T
2: Choose one relay ϕ ∈ Φ at random.
3: Φ← Φ \ {ϕ}
4: Find a set of children node Vϕ of ϕ
5: T ← T \ {(u, v) ∈ T |u ∈ Vϕ ∨ v ∈ Vϕ}
6: E ← E \ {(u, v) ∈ E|u ∈ (Vr \ Φ) ∨ v ∈ (Vr \ Φ)} # disable unused relays
7: HCPrimRST(T, S ∪ Φ, E, ℏ, Ẽmax )
8: HCPrimRST(T, S ∪ Φ, E, ℏ,∞)
9: HCPrimRST(T, S ∪ Φ, E,∞,∞)

4.4 Experiments

4.4.1 Experiment settings
In our experimental studies, network parameters are set as in Tam et al. (2020) where net-
work constants are as in Table 4.2.1 with parameters l = 4000 and d0 = ϵmd÷ϵfs. We also
assume that all sensors and relays have the same radius r = 25meters. All algorithmswere
implemented in Python using the GeneticPython (Bui, 2020) and NumPy (Van Der Walt
et al., 2011) frameworks1. All experiments are performed in a single Intel Xeon(R) E-
2124G 3.40 GHz CPU with 16 GB RAM running on Ubuntu Linux 16.04. No extra par-
allelization apart from the default NumPy acceleration is used.

4.4.2 Datasets
We generate 18 network instances according to previous works (Hai et al., 2017, Tam
et al., 2018, 2020). Three real 3D terrain datasets in Vietnam (Figure 4.4.1) are used
as the area to place sensors and relays. All terrains are defined according to the Digital

1Source codes and datasets: https://github.com/ngocbh/nebp_wsn
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Table 4.4.1: Description of network instances. The last column refers to the density of the
communication graph.

Instance Node distribution Terrain Terrain size No. relays No. sensors Density

S1

NIn1 Gaussian T1 200× 200 20 20 0.53
NIn2 Gaussian T2 200× 200 20 20 0.61
NIn3 Gaussian T3 200× 200 20 20 0.53
NIn4 Uniform T1 200× 200 20 20 0.53
NIn5 Uniform T2 200× 200 20 20 0.53
NIn6 Uniform T3 200× 200 20 20 0.48

S2

NIn7 Gaussian T1 200× 200 40 40 0.28
NIn8 Uniform T2 200× 200 40 40 0.1
NIn9 Gaussian T2 500× 500 100 100 0.19
NIn10 Uniform T3 500× 500 100 100 0.17
NIn11 Gaussian T3 1000× 1000 200 200 0.52
NIn12 Uniform T1 1000× 1000 200 200 0.15

S3

NIn13 Gaussian T1 200× 200 40 80 0.2
NIn14 Uniform T2 200× 200 40 80 0.18
NIn15 Gaussian T2 500× 500 100 200 0.1
NIn16 Uniform T3 500× 500 100 200 0.09
NIn17 Gaussian T3 1000× 1000 200 400 0.28
NIn18 Uniform T1 1000× 1000 200 400 0.28

(a) T1: Ho Chi Minh (b) T2: Vung Tau (c) T3: Phu Quoc

Figure 4.4.1: Height heatmaps of terrains.

Elevation Model (DEM) standard. The sensors and potential relay nodes are deployed in
each terrain according to two distributions (Gaussian and Uniform).

We split the data into three sets: S1, S2, and S3. S1 includes 6 instances with 20 RNs
and 20 SNs. S2 contains 6 instances with increasing SNs in the network. S3 uses the same
settings as S2 with twice the SNs in the network. The usage of these sets is discussed in
detail in Subsection 4.4.5. Details of the network instances are shown in Table 4.4.1.

4.4.3 Performancemetrics
Comparing Pareto fronts is not very straightforward. No single metric can best cover all
aspects (cardinality, convergence, diversity) (Audet et al., 2020, Konstantinidis and Yang,
2011, Riquelme et al., 2015). Thus, we report the following five metrics.

• Inverted Generational Distance (IGD) (Coello and Cortés, 2005): Given an op-
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timal Pareto front (PF) P , IGD of a approximation set S is calculated as:

IGD(S, P ) =
1

|P |

(∑
p∈P

dlp

) 1
l

,

where dp = mins∈S ∥f(s) − f(p)∥ and l = 2 (in general). IGD can capture both
the convergence and diversity of approximation PFs. However, this metric cannot
be used without an optimal PF.

• Hypervolume (HV ) (Zitzler and Thiele, 1999): As described in Audet et al. (2020),
the hypervolume indicator is the volume of the space dominated by the Pareto front
approximation S and delimited from above by a reference point r ∈ Rm such that
for all s ∈ S, s ≺ r. The hypervolume is given by:

HV (S, r) = λm

(∪
s∈S

[s, r]

)
,

where λm is the m-dimensional Lebesgue measure. In a bi-objective problem (m =
2), hypervolume can easily be obtained in linear time.

• Convergence of two sets (C) (Zitzler and Thiele, 1998): This metric is widely used
to capture the convergence of two approximation sets. It is defined by the ratio of a
set dominated by others divided by its cardinality:

C(A,B) =
|{b ∈ B|∃a ∈ A : b ≺ a}|

|B|
.

If C(A,B) = 1, all solutions of B are dominated by solutions of A. Note that we
have to compute both C(A,B) and C(B,A) since their sum is not always equal to
1.

• Delta-metric (∆) (Deb et al., 2002): This is a unary metric used to measure a PF’s
diversity. In bi-objective problem, ∆(S) of a PF S is defined as:

∆(S) =
df + dl +

∑|S|−1
i=1 |di − d̄|

df + dl + |S|d̄
,

where df and dl are the Euclidean distances between the extreme solutions in one
objective and the boundary solutions of S. di is the Euclidean distance between
consecutive solutions of approximation set S and d̄ is the mean of di. The smaller
value of ∆(S) gives a better spread of the PF.

• Cardinality (ONV G) (Schott, 1995): This is a straightforward metric computing
a PF’s cardinality

ONV G(S) = |S|.

Since the NEBP is a bi-objective problem, one of which is discrete with a low range,
ONV G is essential to measure the spread of PFs.

4.4.4 Baselines
We compare our proposedmethodwith five algorithms, including different encodingmeth-
ods and search operators that are widely used in tree encoding problems:
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• HMOEA: We adopt a hybrid multi-objective evolutionary algorithm (HMOEA)
proposed in Prakash et al. (2020) for bi-Objective Minimum Diameter-Cost Span-
ning Tree (bi-MDCST) problem to tackle the NEBP. A permutation encoding with
a heuristic CBTC-based decoder is proposed to represent several solutions of vary-
ing relay’s constraint in which the order crossover and swap mutation are used for
reproduction.

• Prufer encoding (Prufer): Prufer encoding is used in conjunction with two com-
mon search operators in integer chromosomes: uniform crossover and swap mu-
tation. To reduce the infeasible ratio caused by incomplete graphs, we repair the
decoded edges using only valid edges with KruskalRST to complete the candidate
tree.

• NetKeys encoding (Netkeys): In this scheme, we encode a tree using general
Network Random Keys with uniform crossover and swap mutation, as suggested
in Rothlauf et al. (2002).

• Edge-set and PrimRST (Prim): This algorithm is based on the application of edge
sets to the degree-constraint minimum spanning tree problem (d-MST) as presented
in Raidl and Julstrom (2003). In the recombination process, we use PrimRST to
create offspring from the parents’ edges. In the mutation, we use the edge insertion
mutation, as described in Section 4.3.4.

• Edge-set and KruskalRST (Kruskal): All settings are the same as in the Prim-
based approach, but KruskalRST is used instead of PrimRST in the recombination.

• Edge-set and Guided Prim (GPrim): This is our proposed algorithm.

In these approaches, the first three algorithms (HMOEA, Prufer, and NetKeys) are in-
direct representations, while the rest (Prim, Kruskal, and GPrim) are direct representations.
Leveraging the discreteness of one of the objectives, HMOEA maintains an external pop-
ulation to store the Pareto front. Each offspring will be evaluated in different constraints
of relays to update the Pareto front as well as the main population, where the tournament
of size three is used to select the parents. Meanwhile, the remaining algorithms are ap-
plied to the NSGA-II structure with binary tournament selection. Note that our methods
can also apply to other multi-objective optimizations (MOOs) algorithm structures such as
MOEA/D (Cheng et al., 2015), SPEA2 (Zitzler et al., 2001). However, such combinations
are reserved for future works.

4.4.5 Results and discussions
We design four main experiments to study the behavior of the approaches through four
aspects:

• Efficiency: In this experiment, we use six instances inS1 and find an approximation
of optimal PF for each instance by combining the results of the six algorithms with
a vast number of generations. We later compare the algorithms on the IGD metric,
as well as their convergence process through each generation.

• Scalability: This experiment uses 12 instances in sets S2 and S3, to study the be-
havior of algorithms as network complexity increases.

• Sparsity of feasible solution: This experiment aims to investigate the ability to
handle sparse solution spaces by reducing the max-hop constraint on each instance
in all datasets.
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• Density of the network: Various communication ranges are used to examine the
impact of the graph’s density on the algorithms.

Table 4.4.2: The max-hop constraint (ℏ) on each type of dataset. All instances are ensured
to have valid solutions.

Type 1 Type 2 Type 3 Type 4

ℏ 6 8 12 16

Table 4.4.3: The operator’s probability of each algorithm. pc is the crossover probability
and pm is the mutation probability. For GPrim, pm represents a pair of energy-oriented
and relay-oriented mutation probability

HMOEA Prufer NetKeys Prim Kruskal GPrim

pc 0.6 0.9 0.9 0.9 0.9 0.5
pm 0.4 0.5 0.1 0.5 0.5 (0.5, 0.5)

Parameter selection. We set the population size to 100 while the number of generations
is set to 100. The max-hop constraint is set depending on the complexity of the network
instance (see Table 4.4.2). Each experiment is performed over 10 independent runs with
different seeds.

Since each algorithm has different crossover andmutation operators, we perform a grid
search to select crossover and mutation probability. Five random instances are generated,
on which the probabilities are searched independently for each algorithm. Table 4.4.3
shows the resulting settings.

(a) NIn9 - 100 SNs and 100 SNs (b) NIn15 - 100 SNs and 200 SNs

Figure 4.4.2: Feasible ratio of the population on various max-hop constraints.

Initialization analysis. We compare the ratio of feasible solutions constructed by the pro-
posed initializationHCPrimRSTwith other standard initializations PrimRST,KruskalRST,
andRandWalkRST. The result is shown in Figure 4.4.2. We run four initializations (PrimRST,
KruskalRST, RandWalkRST, HCPrimRST) on two instances (NIn9 and NIn15) with var-
ious max-hop constraint ℏ. Each algorithm is invoked 1000 times for each value of ℏ.
Figure 4.4.2 shows the feasible solution ratio of the initializations on a different value of
ℏ. The HCPrimRST gives the best feasible ratio in all max-hop constraints. The feasible
ratio of the remaining methods (PrimRST, KruskalRST, and RandWalkRST) is inversely
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Table 4.4.4: Performance of competing algorithms on the set S1. Bold values indicate the
best values.

(a) Inverted Generational Distance (IGD)

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn1 0.039 ± 0.007 0.037 ± 0.005 0.039 ± 0.006 0.033 ± 0.008 0.036 ± 0.004 0.000 ± 0.000
NIn2 0.043 ± 0.011 0.038 ± 0.004 0.038 ± 0.005 0.033 ± 0.007 0.036 ± 0.007 0.000 ± 0.000
NIn3 0.035 ± 0.006 0.036 ± 0.005 0.033 ± 0.007 0.034 ± 0.006 0.035 ± 0.003 0.000 ± 0.000
NIn4 0.033 ± 0.007 0.036 ± 0.006 0.036 ± 0.007 0.034 ± 0.007 0.039 ± 0.005 0.000 ± 0.000
NIn5 0.034 ± 0.004 0.038 ± 0.007 0.039 ± 0.004 0.032 ± 0.005 0.037 ± 0.007 0.000 ± 0.000
NIn6 0.035 ± 0.005 0.036 ± 0.004 0.037 ± 0.006 0.033 ± 0.007 0.034 ± 0.006 0.000 ± 0.000

(b) Cardinality (ONV G)

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn1 9.90 ± 0.831 7.90 ± 1.375 8.30 ± 1.269 9.90 ± 2.256 8.90 ± 0.943 20.00 ± 0.000
NIn2 9.40 ± 1.281 8.00 ± 1.095 8.60 ± 1.281 9.60 ± 1.744 9.40 ± 1.625 20.00 ± 0.000
NIn3 10.30 ± 0.900 8.00 ± 1.183 10.40 ± 1.562 9.30 ± 1.616 9.30 ± 0.900 20.00 ± 0.000
NIn4 10.30 ± 1.100 8.40 ± 1.428 8.70 ± 1.269 9.10 ± 1.700 8.30 ± 1.100 20.00 ± 0.000
NIn5 10.30 ± 1.005 8.20 ± 1.400 8.70 ± 0.781 9.70 ± 1.552 8.60 ± 1.625 20.00 ± 0.000
NIn6 10.70 ± 0.781 7.50 ± 1.025 8.70 ± 1.487 10.00 ± 2.449 9.70 ± 1.900 20.00 ± 0.000

proportional to the average diameter in the results shown in Raidl and Julstrom (2003).
For example, when ℏ = 14, HCPrimRST produces valid solutions 45% of the time. This
metric for PrimRST is 2.8%. KruskalRST and RandWalkRST produced no feasible solu-
tions on average. If KruskalRST or RandWalkRST was applied in this case, it might leave
the algorithm with no valid solutions in the first few generations.

Based on the above results, in the following experiments, HCPrimRST will be used
as the initialization for all compared algorithms.

Efficiency evaluation. In this experiment, we look into each algorithm’s efficiency com-
pared to an approximation of optimal PF.We use six small instances in the set S1. Optimal
PF is approximated by running each algorithm 100 times with different seeds, each with
1000 generations. The best solutions are combined to generate a final approximation PF.

Table 4.4.4 summarizes the results of competing algorithms through three metrics
(IGD, and ONV G). GPrim outperforms HMOEA, Prufer, NeyKeys, Prim, and Kruskal
with regard to both convergence and diversity. GPrim’s PF approaches the approximation
PF in most cases. Between standard direct and indirect representations, Prufer showed
the worst results in the aforementioned aspects, while NetKeys and HMOEA provide bet-
ter results than standard direct representations (Prim, Kruskal). In Figure 4.4.3, we show
the convergence profiles of IGD values on network instance NIn1. GPrim again shows
faster convergence than the remaining approaches, while the standard direct representa-
tions (Prim and Kruskal) show promising results.
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(a) IGD metric over generations (b) The Pareto-fronts comparison where the
black line is the approximate optimal PF

Figure 4.4.3: Comparison of five algorithms on NIn1.

Considering the performance in the number of non-dominated solutions, GPrim con-
sistently finds the maximum value of OV NG. This result demonstrates the effectiveness
of the relay-oriented mutation. HMOEA, NetKeys, Prim, and Kruskal perform similarly
and fluctuate around 9 solutions for each instance. Meanwhile, Prufer performs worst on
OV NG.

Figure 4.4.4: Box plots for C-metric. The rectangle at row A and column B represent
C(A,B). Each rectangle includes 12 box plots (left to right) corresponding to 12 instances
(NIn7 to NIn18). C-metric values are scaled to [0,1].
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Table 4.4.5: Performance of competing algorithms on testsets S2 and S3. Each table
shows the results on one metric and bold values indicate the best value.

(a) Hypervolume (HV )

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn7 0.879 ± 0.001 0.763 ± 0.013 0.774 ± 0.029 0.765 ± 0.024 0.858 ± 0.015 0.930 ± 0.001
NIn8 0.854 ± 0.002 0.716 ± 0.021 0.771 ± 0.015 0.740 ± 0.026 0.836 ± 0.024 0.907 ± 0.005
NIn9 0.909 ± 0.001 0.737 ± 0.015 0.788 ± 0.020 0.733 ± 0.013 0.890 ± 0.019 0.964 ± 0.006
NIn10 0.910 ± 0.001 0.750 ± 0.011 0.806 ± 0.024 0.753 ± 0.006 0.897 ± 0.022 0.967 ± 0.000
NIn11 0.930 ± 0.000 0.602 ± 0.015 0.709 ± 0.025 0.609 ± 0.007 0.764 ± 0.028 0.780 ± 0.017
NIn12 0.922 ± 0.001 0.762 ± 0.011 0.797 ± 0.023 0.738 ± 0.008 0.905 ± 0.016 0.941 ± 0.021
NIn13 0.788 ± 0.007 0.688 ± 0.018 0.735 ± 0.021 0.740 ± 0.014 0.765 ± 0.019 0.843 ± 0.001
NIn14 0.751 ± 0.019 0.649 ± 0.022 0.733 ± 0.020 0.725 ± 0.025 0.741 ± 0.015 0.885 ± 0.006
NIn15 0.741 ± 0.025 0.608 ± 0.038 0.621 ± 0.030 0.671 ± 0.016 0.719 ± 0.046 0.899 ± 0.001
NIn16 0.896 ± 0.002 0.744 ± 0.010 0.810 ± 0.009 0.762 ± 0.018 0.825 ± 0.016 0.959 ± 0.001
NIn17 0.915 ± 0.002 0.575 ± 0.010 0.708 ± 0.032 0.604 ± 0.008 0.700 ± 0.024 0.814 ± 0.015
NIn18 0.914 ± 0.002 0.556 ± 0.009 0.706 ± 0.018 0.577 ± 0.017 0.697 ± 0.026 0.805 ± 0.011

(b) Delta-metric (∆)

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn7 0.775 ± 0.028 0.878 ± 0.019 0.892 ± 0.023 0.868 ± 0.020 0.829 ± 0.012 0.599 ± 0.002
NIn8 0.776 ± 0.031 0.870 ± 0.030 0.873 ± 0.020 0.870 ± 0.019 0.842 ± 0.037 0.699 ± 0.048
NIn9 0.826 ± 0.017 0.937 ± 0.017 0.941 ± 0.015 0.945 ± 0.017 0.923 ± 0.025 0.758 ± 0.032
NIn10 0.825 ± 0.022 0.940 ± 0.016 0.944 ± 0.015 0.945 ± 0.010 0.917 ± 0.028 0.779 ± 0.015
NIn11 0.799 ± 0.017 0.962 ± 0.012 0.948 ± 0.026 0.975 ± 0.016 0.955 ± 0.020 0.762 ± 0.010
NIn12 0.885 ± 0.028 0.956 ± 0.009 0.974 ± 0.013 0.971 ± 0.009 0.936 ± 0.013 0.785 ± 0.012
NIn13 0.882 ± 0.028 0.940 ± 0.040 0.947 ± 0.025 0.953 ± 0.031 0.950 ± 0.033 0.935 ± 0.004
NIn14 0.874 ± 0.048 0.936 ± 0.034 0.947 ± 0.020 0.921 ± 0.036 0.940 ± 0.035 0.947 ± 0.027
NIn15 0.896 ± 0.036 0.960 ± 0.022 0.975 ± 0.033 0.969 ± 0.025 0.979 ± 0.023 0.960 ± 0.006
NIn16 0.851 ± 0.033 0.945 ± 0.019 0.985 ± 0.012 0.967 ± 0.013 0.970 ± 0.012 0.966 ± 0.012
NIn17 0.878 ± 0.019 0.964 ± 0.009 0.991 ± 0.022 0.983 ± 0.008 0.968 ± 0.016 0.946 ± 0.008
NIn18 0.877 ± 0.047 0.963 ± 0.012 0.982 ± 0.016 0.987 ± 0.010 0.993 ± 0.011 0.945 ± 0.007

(c) Cardinality (ONV G)

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn7 10.30 ± 1.100 10.00 ± 1.483 9.60 ± 1.428 11.00 ± 2.236 14.00 ± 1.095 38.00 ± 0.000
NIn8 9.50 ± 1.285 9.80 ± 1.887 10.80 ± 1.327 10.00 ± 1.183 12.90 ± 2.948 27.70 ± 0.900
NIn9 8.50 ± 1.025 10.90 ± 2.343 11.80 ± 2.040 10.90 ± 1.221 15.20 ± 2.561 71.80 ± 3.572
NIn10 8.80 ± 0.872 10.90 ± 1.972 11.10 ± 2.948 10.30 ± 1.487 17.70 ± 2.934 69.60 ± 3.323
NIn11 10.40 ± 0.917 9.70 ± 1.900 17.50 ± 3.170 9.80 ± 3.400 16.30 ± 2.452 98.60 ± 1.114
NIn12 6.80 ± 0.872 11.70 ± 1.187 11.00 ± 1.789 10.30 ± 2.193 19.20 ± 2.441 94.60 ± 3.980
NIn13 5.00 ± 1.000 3.10 ± 1.640 2.50 ± 0.671 2.40 ± 1.020 2.40 ± 1.020 4.00 ± 0.000
NIn14 5.10 ± 1.446 4.30 ± 1.487 4.30 ± 1.100 6.20 ± 1.778 3.20 ± 0.748 9.10 ± 0.539
NIn15 3.80 ± 1.536 3.70 ± 1.005 1.90 ± 0.539 3.00 ± 1.414 2.00 ± 0.894 6.00 ± 0.000
NIn16 7.00 ± 1.732 8.00 ± 1.183 5.70 ± 1.952 6.50 ± 1.910 6.00 ± 1.732 24.30 ± 1.900
NIn17 6.20 ± 0.872 9.80 ± 1.990 10.10 ± 3.448 5.00 ± 1.897 6.80 ± 2.600 23.20 ± 2.891
NIn18 6.50 ± 1.500 8.00 ± 2.191 10.40 ± 2.905 4.00 ± 1.844 6.20 ± 2.522 22.30 ± 3.257
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Figure 4.4.5: The comparison of Pareto-front on test setS2 (NIn7 toNIn12) andS3 (NIn13
to NIn18).

Scalability evaluation. This experiment aims to investigate the behavior of the algo-
rithms on different structures of the graph, especially when the graph size is expanded.
We use 12 network instances in sets S2 and S3 with different distributions and sizes to
demonstrate the effectiveness of the algorithm in various topologies of the graph. Since
finding the approximation PF costs a massive amount of the computation power on com-
plex network instances, we consider the convergence of two sets (C-metric) and delta
metric (∆) instead of IGD.

In terms of convergence, we use box plots similar to Zitzler et al. Zitzler and Thiele
(1999) to summarize C-metric values of different runs (see Figure 4.4.4). Results show
that GPrim produces dominating PFs over other algorithms in most cases, with C values
asymptotic to 1 in most test cases. Specifically, GPrim covers more than 88% on average
of the fronts computed by HMOEA, while only 0.03% of which dominates the solutions of
GPrim. In several instances (NIn11, NIn12, NIn17, NIn18), HMOEAproduces some better
solutions over GPrim with fewer relays due to the mechanism that decodes and evaluates
each individual on different relay constraints. It diversifies the evaluated solutions across
different numbers of relays. As a trade-off, HMOEA shows poor energy consumption
and C-metric results, even in comparison with NetKeys, Prim, and Kruskal. Comparing
GPrim and Kruskal, the PFs of GPrim still dominate the PFs of Kruskal in the test set
S3, where the number of sensors is twice the number of potential relays. In the set S2,
Kruskal produces some better solutions over GPrim in energy consumption with small
networks (NIn8) or use fewer relays inmore extensive networks (NIn12). However, GPrim
still covers, on average, more than 97% of the PFs computed by Kruskal in all network
instances. Figure 4.4.5 illustrates the PFs of six algorithms with a specified seed.

In terms of hypervolume (see Table 4.4.5a), we can observe that GPrim outperforms
Prufer, NetKeys, Prim, and Kruskal in all instances, especially on the S3 set. Meanwhile,
HMOEA produces a better HV metric than GPrim in some instances (NIn11, NIn17, and
NIn18) and worse than GPrim in the remaining instances. Note that the superiority of
HMOEA in those instances comes from the better spreading of PFs regarding the relay’s
objective while the convergence of HMOEA is weak as mentioned in C-metric above.
Prufer gives the worst result in all test cases among the remaining algorithms. The PFs
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obtained by NetKeys are generally better than Prim. Meanwhile, Kruskal outperforms
both NetKeys and Prim. However, the results of Kruskal deteriorate in the test set S3.

Considering the diversity and spread of PFs, the results on∆ value (see Table 4.4.5b)
shows that GPrim and HMOEA produce very diverse non-dominated networks with∆ =
0.840 on average while the average diversity of the HMOEA is∆ = 0.845 in which GPrim
performs the best in the second test set S2 and HMOEA is the best in the third test set S3.
The average Delta metric of Kruskal is ∆ = 0.933; Prufer is ∆ = 0.938; NetKeys and
Prim have a very similar result ∆ = 0.946. Furthermore, the number of nondominated
solutions obtained by GPrim (40 solutions on average) is more than four times better than
others. The detail on each network instance is shown in Table 4.4.5c.

In general, the proposed approach outperforms other approaches in all evaluated as-
pects. HMOEA shows an advantage in the relay’s objective resulting in the diversity and
spread of PFs. However, as a trade-off, HMOEA provides weak performances in the
convergence aspect. The poor result of the Prufer code is predictable due to problems
with infeasible structures and low locality, as mentioned in Gottlieb et al. (2001), Roth-
lauf (2006). The general phenotypic application of PrimRST is generally worse than the
NetKeys approach. In comparison, Kruskal can achieve better results than NetKeys in
most cases. This result is consistent with the results shown Raidl and Julstrom (2003).
However, the results of Kruskal tend to deteriorate in the third test set S3.

Evaluation on sparse solution spaces. The initialization experiment (Section 4.4.5) showed
the relation between the max-hop constraint and the sparsity of solution space and its
impact on different random-tree algorithms. Since KruskalRST tends to produce higher-
diameter trees than PrimRST, it also produces more infeasible solutions when tightening
the max-hop constraint. Consequently, the KruskalRST-based approach also struggles in
a sparse solution space.

(a) ℏ = 2 (b) ℏ = 12

Figure 4.4.6: Performance of competing algorithms in different ℏ on network instance
NIn9.

For example, we examine five algorithms on the same instance NIn9 with ℏ = 2 and
ℏ = 12. The result is shown in Figure 4.4.6. With the same settings as in 4.4.5 (ℏ = 12),
Kruskal gives better results than both NetKeys and Prim. However, when tightening the
max-hop constraint (ℏ = 2), the result obtained by Kruskal is worse than both NetKeys
and Prim. This result is consistent with the deterioration of Kruskal in the test set S3 since
adding more sensors in the network requires more hops to connect all sensors. Note that
the best results are obtained by GPrim in both cases; the gap to other algorithms increases
when the feasible solution space becomes smaller.
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(a) Hypervolume (b) Delta-metric (c) ONV G

Figure 4.4.7: Comparison of hypervolume, delta-metric and ONV G with different com-
munication radius on network instance NIn9.

Evaluation on dense network. We vary the communication range from 25 to 40 to exam-
ine the impact of the density of the graph on six algorithms. Figure 4.4.7 shows the com-
parison of hypervolume, Delta-metric, andONV Gwith different communication radii on
the network instance NIn9. The ranking of the algorithms is similar to that of the previ-
ous experiments. However, we can observe the different tendencies of algorithms when
increasing the radius. Prufer, NetKeys, Prim, and Kruskal deteriorate their results when
increasing the communication range, while GPrim and HMOEA tend to produce better
results with the dense graph.

Complexity evaluation. We summarize the analysis of the complexity of the five algo-
rithms in Table 4.4.6. The integer search operators on Prufer code only take O(n) in each
move. However, the repair process of removing invalid edges takes O(m) in the worst
case. Both Prim and Kruskal only take O(n) in crossover and mutation operator and
require no repair process. NetKeys encodes all possible edges and requires a sorting al-
gorithm; thus, it costs O(m logm) in decoding and O(m) in both crossover and mutation.
In HMOEA, the decoder uses a CBTC-based heuristic which requires O(n2) to decode a
chromosome for a given relay constraint, while the reproduction costs O(n) for a recom-
bination and O(1) for a mutation. The complexity of GPrim is the same as described in
Section 4.3.

Table 4.4.6: Complexity comparison for each algorithm.

Decoding Crossover Mutation Repair

Prufer O(n) O(n) O(n) O(m)
NetKeys O(m logm) O(m) O(m) -
Prim O(n) O(n) O(n) -
Kruskal O(n) O(n) O(n) -
HMOEA O(n2) O(n) O(1) -
GPrim O(n) O(nℏ) O(max(nℏ,m)) -

Table 4.4.7 shows the average running time of five algorithms in three test sets. The
running time of GPrim is an acceptable tradeoff considering its various improvements.
The fastest algorithm is Prim inmost cases. Prufer gives the fastest result in some cases but
is often much slower as infeasible structures occur more frequently. Kruskal has the same
theoretical complexity as Prim, but requires higher programming constants. Meanwhile,
NetKeys and, especially, HMOEA require much computation in large and dense networks.
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Table 4.4.7: Average algorithm running time (in seconds).

HMOEA Prufer NetKeys Prim Kruskal GPrim

NIn1 35.1 19.1 25.0 17.2 21.8 23.9
NIn2 39.2 19.3 26.6 17.2 21.8 24.0
NIn3 39.6 27.3 34.3 19.8 29.8 26.1
NIn4 39.6 28.4 34.5 19.8 30.0 26.0
NIn5 39.6 27.9 34.5 19.8 30.5 26.2
NIn6 37.1 28.0 34.3 19.9 30.5 25.8

NIn7 85.9 27.9 39.5 29.7 34.5 42.2
NIn8 36.5 22.9 24.0 28.9 32.1 40.6
NIn9 342.2 63.0 129.3 68.2 84.4 98.8
NIn10 293.8 59.0 114.4 70.8 81.6 98.2
NIn11 3921.3 235.8 1151.3 195.0 338.0 249.0
NIn12 1060.3 131.5 379.2 158.3 199.4 215.1

NIn13 117.9 36.0 55.9 43.1 44.5 76.3
NIn14 101.3 37.5 50.5 41.9 46.5 73.6
NIn15 365.8 110.1 154.9 106.9 119.8 227.8
NIn16 332.6 125.8 134.4 106.3 115.9 178.2
NIn17 4303.1 594.6 1386.9 287.2 436.8 459.8
NIn18 4427.1 639.5 1493.7 297.5 463.0 478.2

4.5 Discussion

In this chapter, we introduced the Node-Energy Bottleneck problem in multi-hop wire-
less sensor networks (NEBP) and presented two objectives for the problem: minimiz-
ing the number of relay nodes and maximizing the network lifetime. We then developed
a phenotype-based multi-objective evolutionary algorithm that simultaneously optimizes
both objectives. To enhance the convergence speed of the algorithm, we proposed local
heuristics for initialization, crossover, and mutations. We conducted extensive experi-
ments to compare the proposed method with other standard encoding methods. The sim-
ulation results demonstrate that the proposed method outperforms the other methods in
terms of all measured metrics with a reasonable computation time.

However, one limitation of the proposed scheme is that it assumes that the relay nodes
connect directly to the base station. In some applications, such as in large-scale networks
or in areas with limited connectivity, this assumption may not hold, which may limit the
practicality of the proposed approach. It would be interesting to investigate the effective-
ness of the proposed scheme under more realistic network topologies and connectivity
scenarios.

Furthermore, in future research, we aim to develop more optimized algorithms for the
NEBP problem and extend the model to deal with mobile sensors. Additionally, we plan
to investigate the same problem for heterogeneous wireless sensor networks rather than
just homogeneous WSNs. Another avenue for future research is to explore hybridizing
different encoding methods with different MOO algorithms, which may provide further
insights into the impact of representation on each algorithm. The results obtained here
highlight the potential of phenotype-based approaches, which may be promising for simi-
lar problems.
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Chapter 5

A Reinforcement Learning-based Charging
Policy inWRSNs

This chapter studies the adaptive charging problem in WRSNs with target coverage and
connectivity constraints. The main advantage of the WRSN paradigm compared to other
techniques, such as energy-efficient routing and energy harvesting, is the ability to pro-
vide continuous and reliable services. The basic idea behind WRSNs is to use a mobile
charger (MC) with a high-power battery to move around and wirelessly charge the sensors.
However, the main challenge lies in designing a suitable charging strategy for the mobile
charger, which should account for uncertainties arising in the network. The existing charg-
ing schemes either make a strict assumption about constant energy consumption rates or
cannot adapt to unpredictable changes in network topology. To overcome this challenge,
we propose a new charging scheme that uses deep reinforcement learning (DRL) to guide
the mobile charger adaptively. This approach allows the mobile charger to adjust to spon-
taneous changes in the network topology. The empirical results show that our method
outperforms existing charging schemes by a significant margin.

5.1 Introduction

The real-world deployment of WSNs must fulfill many quality-of-service (QoS) require-
ments, inwhich coverage and connectivity are often considered two paramount factors (Tri-
pathi et al., 2018). The coverage specifies how well the sensors monitor the areas or tar-
gets of interest, while the connectivity relates to the ability to transmit the sensing data
from the sensors to the BS. Ensuring coverage and connectivity is critical since, in many
applications, the network is required to monitor and analyze the targets or areas continu-
ously (Zhao and Gurusamy, 2008).

However, maintaining the network for continuous surveillance is an enormous chal-
lenge due to the energy restriction of the sensors–that the sensors are often equipped with
low-cost, low-power batteries (Akyildiz et al., 2002). When the battery is fully consumed,
a sensor can no longer monitor the targets or relay the data; thus, the network may become
fragmented, and the data from some parts of the sensing field may no longer be extracted.
Furthermore, sensor networks are often implemented on a wide scale in potentially haz-
ardous terrain that is difficult for people to access (e.g., battlefields, underground). In such
circumstances, it is difficult to replace the sensors’ batteries.

Traditional approaches focus on conserving energy via optimizing sensor functioning,
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such as data reduction (Goyal et al., 2019), sleep/wakeup schemes (Haimour and Abu-
Sharkh, 2019), and energy-efficient routing (Raj et al., 2019). However, this approach
is only able to extend the sensors’ lifetime for a certain amount of time. The battery will
eventually be exhausted if there is no external source supplying the sensors. An alternative
solution is to deploy an energy harvester or scavenger inside each sensor to convert energy
from an external source (e.g., solar, thermal, wind) (Adu-Manu et al., 2018). Nevertheless,
this technique dramatically depends on an ambient source that is usually unstable and
uncontrollable.

Recent progress in wireless power transmission technology based on electromagnetic
waves (Kurs et al., 2007, Lu et al., 2015) has given rise to a novel scheme, namelywireless
rechargeable sensor networks (WRSNs) (He et al., 2012), for energizing the sensors. The
idea is to employ a (or multi-) mobile charger (MC) equipped with a high-capacity battery
and a transmission coil to travel around the sensing field and charge the sensors wirelessly.
Here, the sensors have a receiver that helps them receives energy from the MC through
electromagnetic waves. Unlike the energy harvesting techniques, this scheme offers ag-
ile, controllable, and reliable energy replenishment, thus enabling genuinely sustainable
operations for the sensor networks.

In practice, the charging strategy of the MC(s) has a considerable impact on the perfor-
mance of aWRSN (i.e., sensor lifetime). Numerous research has been conducted to design
charging strategies for theMC, which can be classified into two categories: periodic charg-
ing and on-demand charging. In the periodic charging scheme, the energy consumption
rate of each sensor is assumed to be constant and known in advance. Thereby, an opti-
mal charging trajectory could be planned before the running phase. The MC then travels
along the pre-optimized charging trajectory to recharge nodes in a periodic and determinis-
tic manner (Jiang et al., 2017, Lyu et al., 2019, Ma et al., 2018b, Xu et al., 2019). However,
the sensors’ energy consumption profiles often fluctuate greatly due to the close interac-
tion with the surrounding environment (He et al., 2013). Furthermore, WSNs are very
dynamic–that a node failure might change the routing paths of many packets, causing tur-
bulence in the average power consumption of many nodes. As a result, the pre-optimized
charging trajectory may become inefficient.

To overcome these issues, the on-demand charging scheme instead requires the sensors
to send a charging request to the MC when their residual energy falls below a predeter-
mined threshold. The MC will maintain a pool of charging requests and then choose the
next charging destinations based on the current service pool. He et al. (He et al., 2013) in-
troduced a simple heuristic algorithm, namely Nearest-Job-Next with Preemption (NJNP),
that chooses the next charging destination according to the spatially closest sensor in the
queue. Several following works (Fu et al., 2015, Kaswan et al., 2018, Lin et al., 2017,
2019, Zhu et al., 2018) improved this heuristic by introducing double warning thresholds
or using meta-heuristic algorithms. Recent works also leveraged (deep) Q-learning to
learn on-demand charging policy (Cao et al., 2021, La et al., 2020).

Despite the promising results, a common drawback of the on-demand algorithms is the
dependence on the chosen threshold for the charging requests. Specifically, if the charg-
ing threshold is set too high, the sensors will send the charging requests too frequently,
causing the MC to become overloaded and degrading the efficiency of the charging al-
gorithms (Zhu et al., 2018). A small charging threshold, on the other hand, may cause
sensors to submit requests too late, and the MC may not come in time to charge before the
sensor runs out of energy. In the example shown in Fig. 5.1.1, after fully charging node
F , the mobile charger (MC) continuously chooses a requested node in the current service
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Figure 5.1.1: The drawback of on-demand charging scheme. Node E sends a charging
request right after the MC decides to charge node A next.

pool to charge (node A or B). If node E requests charging when the MC has just decided
to go to A or B, the MC must move back and forth to serve the requests.

In this work, we propose a novel scheme called adaptive charging to address the draw-
backs of the existing approaches. Specifically, we eliminate the energy threshold in the
on-demand charging and endow the MC with the ability to choose any sensor to charge
at any time, depending on the current state of the network. Thus, the charging policy is
a mapping between the network’s state space and all possible actions, specifying what to
do at a given state. We leverage a deep neural network (DNN) to approximate the strat-
egy’s mapping and use reinforcement learning (RL) techniques to train the model. The
MC will act as an agent in the sensor network (environment), learning to derive the op-
timum charging decisions by interacting with the environment. We will train the model
with considerable network topologies in advance; thus, the trained model can be applied
to any network topology without manually adjusting the parameters.

Contributions. We consider here the connected target coverage problem (Zhao and
Gurusamy, 2008), under the setting of the wireless rechargeable sensor network (WRSN)
paradigm. Specifically, several critical targets are required to be continuously monitored
by a number of randomly scattered sensors, which can be replenished wirelessly by anMC.
Our objective is to design a charging strategy for theMC tomaximize the time interval that
all targets are continuously monitored and analyzed by the BS. The main contributions of
this paper are as follows.

• We propose an adaptive charging scheme by omitting the energy threshold for charg-
ing requests in the on-demand scheme and endowing the MC ability to charge any
sensor at any time. This enables the MC to evaluate other charge options that may
improve the cumulative network’s lifespan instead of focusing on the service pool.

• We design a charging policy to prolong the network’s lifetime using a DNN model,
which can be trained by RL techniques. Our model is flexible–it can operate in a
dynamic sensor network where the number of sensors might change due to node
failures or deployments.

• We conduct the experiment showing the superiority of our model compared to exist-
ing on-demand methods in prolonging the network lifetime. We then discuss further
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Figure 5.2.1: An illustration of a wireless rechargeable sensor network for target-covering.

the self-organizing capability of the proposed method.

The rest of the paper is unfolded as follows: In the next section, we describe the system
model and the setup of the connected target coverage problem in WRSNs. Section 5.3
presents our learning model for the adaptive charging strategy of the MC. In Section 5.4,
we conduct experiments to demonstrate the efficiency of the proposed method.

5.2 SystemModel and Problem Statement

5.2.1 SystemModel
Figure 5.2.1 depicts our targeted wireless rechargeable sensor network, which comprises
four main components: sensors, a base station, a depot, and a mobile charger. Each sensor
has a sensing unit, a processing unit, a transceiver unit, and a power unit. The sensors
monitor pre-specified targets and transmit sensory data to the base station in a multi-hop
paradigm. A mobile charger is a device equipped with a wireless energy transfer module.
It will travel around the network and wirelessly transmit power to the sensors. When the
mobile charger’s energy is almost exhausted, it will return to the depot to charge.

Each sensor has a sensing area determined by its location and sensing range. Any
target located in the sensing area of a sensor could be monitored. A sensor is called a
source node if it covers at least one target, while the sensors that do not cover any target
may act as relay nodes forwarding the sensing data to the sink. A source sensor will
perform the monitoring task and periodically generate sensing data. Here, we assume
that all source sensors generate sensing data at the same rate, i.e., all sensors have the
same sampling frequency, quantization, and coding scheme (Zhao and Gurusamy, 2008).
Thus, each source sensor generates a fixed amount of bits per unit of time. The sensing
data gathered by source sensors is transmitted to the sink by multi-hop communication
over other sensors. Two sensors can communicate with each other if the distance between
them is less than the communication range. We use the same energy consumption model
as in Section 4.2.2.
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5.2.2 ChargingModel
In this work, we only allow the MC to charge one sensor at a time and the sensor will
be fully charged. A charging action of the MC consists of two phases: (1) moving into
the vicinity of the sensor and (2) charging the sensor to full battery capacity. The time to
charge a sensor is determined as follows:

tchi =
BSN − ei
µ− ωi

, (5.1)

where µ is the charging rate,BSN and ei denote the battery capacity and the residual energy
of the sensor, respectively. The parameter ωi is the energy consumption rate (ECR) of the
sensor i which will be estimated by the BS using the residual energy profile of the sensor.
The residual energy profile of the sensor is the sequence of notification packets, i.e., the
sensor records its residual energy and current time stamp and periodically sends it to the
BS. This procedure is similar to the estimation of the dynamic energy consumption rate
in (Zhu et al., 2018).

The dissipated energy of the MC for traveling l units of distance and charging the
sensor i is calculated as:

ẼMC(l, ei, ωmove) = lωmove + µtchi . (5.2)

Here, similar to Cao et al. (2021), we omit the energy dissipated into the environment
during charging; thus the energy consumption of the MC is only composed of the energy
transferred to sensor nodes and the energy consumed by traveling.

5.2.3 Problem Statement
Let us denote byP = {p1, p2, . . . , pn} the set ofn deployed sensors and byQ = {q1, q2, . . . , qm}
the set of m targets to be monitored. We also refer to pBS and pD as the position of the
BS and the depot, respectively. All nodes are deployed in a two-dimensional sensing area.
All sensors have the same battery capacity BSN, sensing range rs, and communication
range rc. A target qk can be monitored by a sensor pi if dist(pi, qk) ≤ rs, where dist(·, ·)
denotes the Euclidean distance. Meanwhile, two sensors pi and pj can communicate to
each other if dist(pi, pj) ≤ rc. Initially, we assume that each target is covered by at least
one sensor and that at least one transmission route from each sensor toward the BS exists.
When a sensor depletes its energy, it deactivates itself and waits to be replenished.

A network’s state is considered covered and connected if it satisfies the two following
constraints: (1) coverage, each target is covered by at least one source sensor, (2) con-
nectivity, from each source sensor to sink, there must exist at least one route traversing
through only active sensors. We then define the network lifetime as the time interval from
when the network starts till the target coverage or the connectivity is not satisfied.

The MC’s parameters can be represented by four factors ⟨BMC, ν, µ, ωmove⟩, where
BMC is the battery capacity, ν is the traveling speed, ωmove denotes the energy consumption
rate of the MC per one unit distance, and µ accounts for both charging rates from the MC
to a sensor and from the depot to the MC. For the sake of simplicity, we assume that the
velocity of the MC is constant and the MC can travel freely inside the sensor field without
obstacles.

The charging path of theMC is a sequence of charging locationswhich are the positions
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Figure 5.3.1: Learning model of a reinforcement learning system.

of the sensors or the depot. If the MC travels to a sensor, the MC will charge it to full
capacity. If the MC goes back to the depot, the MC will recharge its own battery fully.
Our objective is to determine a charging path that maximizes the lifetime of the sensor
network so that every target is monitored and analyzed continuously by the BS.

Notice that our scheme does not require the sensors to send the charging requests to the
MC. We endow the MC the ability to choose any charging destination at any time based
on the network’s state and its own status. Thus we do not need to predetermine the energy
threshold for charging requests like the existing on-demand charging schemes (Cao et al.,
2021, He et al., 2013, Zhu et al., 2018).

5.3 ProposedMethod

The goal of this paper is to design a charging strategy for the MC that can adapt to the
uncertainties arising in the sensor network. To this end, we propose a novel adaptive
charging scheme based on deep reinforcement learning. The MC will act as an intelli-
gent agent interacting with the sensor network by moving around to replenish sensors or
itself (Fig. 5.3.1). We model the policy using a deep neural network that takes a network’s
state as the input and outputs the probabilities of taking charging decisions. The model
is then trained by interacting with simulated environments and adjusting the policy to the
return from the environments.

5.3.1 Formulation of the DRL Framework
In the following, we formulate our problem under the DRL framework. The mathematical
model of a DRL model typically consists of four items, namely a state space S , an actions
space A, a transition model T , and a reward function R.

State. The state information represents the status of the network and theMC that helps
the MC choose the next charging locations. We divide the useful information into two
groups: static and dynamic elements. The static elements contain prescribed information
related to the properties of the mobile charger, the depot, or the sensors such as the position
of sensors, battery capacity, and the number of targets covered by a sensor. The dynamic
elements include temporal information such as the residual energy of devices, the current
position of the MC, and the estimated energy consumption rate of each sensor. Formally,
we define a state x ∈ S as a tuple of (xMC , xD, x̄SN), where xMC is a tuple of the static
and dynamic information of the mobile charger, xD contains the location of the depot in
the sensor field, and x̄SN = {xSNi , i = 1, . . . , n} is a sequence of tuples containing static
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Table 5.3.1: State information. The notation S and D indicate static and dynamic informa-
tion, respectively.

State Parameter Type Comment

xMC

BMC S battery capacity of the MC
ν S velocity of the MC
µ S charging rate
ωmove S ECR for traveling
pMC D current position
eMC D residual energy power

xSN
i

BSN S battery capacity of a sensor
pi S position of sensor i
ξi S no. of targets covered by sensor i
ei D residual energy of sensor i
ωi D ECR of sensor i

xD pD S position of the depot

and dynamic information of each sensor. The detail of the state information is shown in
Table 5.3.1.

Action. We define n+1 actions corresponding to n+1 charging destinations (a depot
and n sensors). An action at made at time t is an integer number at ∈ A = {0, 1, 2, ..., n},
where we denote at = i, i > 0 with regard to the integral index of the sensors, and at = 0
corresponds to going back to the depot and recharging itself.

Transition. We simulate the network environment and return the network’s state at
the end of doing the action at as the next state st+1. The dissipated energy of the sensors
and the MC will be computed following Eq. (4.3) and (5.2). It is worth noting that the
MC is only able to observe the returned state st+1, not the underlying process of the simu-
lation. Compared to Bui (2021), we add some random noise to the resulting states of the
environment after each action to simulate the uncertainties of the real world environment.

Reward. We define the reward R(xt, at) of doing an action at at state xt as the pe-
riod of time doing the action which includes both traveling and charging time. If either the
coverage or connectivity conditions are not met, the simulation environment will be ter-
minated immediately and return the reward till the network downtime. Thus, cumulative
reward over all actions coincides with the lifetime of the network.

A charging trajectory can be represented as a sequence of the network’s states and
the MC’s actions τ = {x0, a0, . . . , xT−1, aT−1, xT}, at ∈ A, xt ∈ S . The γ-discounted
lifetime of the trajectory τ can be computed as:

G(τ) =
T∑
t=0

γtR(xt, at). (5.3)

A stochastic policy π(a|x) determines the probability of taking charging action a given
network state x which models the MC’s behavior at a given time. We aim to find a policy
π∗ that maximizes the expected γ-discounted network’s lifetime.

We delineate a policy approximation using a deep neural network and a policy gradient
algorithm to train the model in the following sections.
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Figure 5.3.2: The model architecture of the actor.

5.3.2 Model Architecture
We parameterize the stochastic policy by πθ(a|x), where θ is the parameters of a deep
neural network aided by the attention and pointing mechanisms, similar to (Hottung and
Tierney, 2019). Fig. 5.3.2 depicts the overall architecture.

The input to the model is the network state xt at time twhich is composed of the states
at time t of the MC xMC

t, the depot xD, and the sensors x̄SNt . The output of the model
is the probabilities of taking action at given the state xt. To simplify the notation, in this
section, we omit the timestamp t when referring to the states xt, xMC

t, and x̄SNt .

We use three transformations EmbMC , EmbD, and EmbSN to embed the input of the
mobile charger, the depot, and the sensors, respectively, to a d-dimensional latent space.
Note that we use the same transformationEmbSN for all sensors and the embedding vector
of each sensor is computed separately and identically. Let hMC , hD, hSNi ∈ Rd be the
embedded input corresponding to xMC , xD, xSNi . For convenience’s sake, we denote h̄C =
{hD, hSN1 , ...hSNn } as a matrix of embedded input of charging destinations and then refer
to h̄Ci as the embedding of charging destination i. An attention layer is used to extract
alignment vector ā, which specifies how much ‘attention’ the MC might have for each
charging destination given their current status. Precisely, the alignment vector is calculated
by the following formula:

ā = softmax(uH0 , u
H
1 , ..., u

H
n ), (5.4)

where:
uHi = zA tanh (WA[h̄Ci ;h

MC ]). (5.5)

Here, [; ] denotes the concatenation of two vectors. The context vector c is provided by:

c =
n∑
i=0

āih̄
C
i . (5.6)
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The context vector is later concatenated with the embedded input of the MC to be the
input of a multilayer perceptron (MLP) with one hidden layer that outputs a vector q ∈ Rd.

q = MLPWB([c;hMC ]). (5.7)

The distribution of the policy over all actions for the state x is then given by:

πθ(a = i|x) = softmax(u0, u1, ..., un), (5.8)

where
ui = zC tanh (h̄Ci + q), (5.9)

and θ = {zA,WA,WB, zC} are trainable parameters.

The pointing mechanism (Vinyals et al., 2015) in the Eq. (5.8) is a reduction of at-
tention mechanism that leverages the alignment vector to determine the probabilities of
selecting each member in the input. Both only require learning a tuple of parameters to
compute utilities of charging actions ((zA,WA) for attention and zC for pointing). It thus
imposes the permutation invariant property for the set of the input’s members, i.e., the out-
put probabilities of the policy depend solely on the features of the sensors but not the order
of the sensors in the input state. Additionally, it allows the MC to operate on a dynamic
network where the number of sensors might change due to node failures or node deploy-
ments. It differs from the prior DRL work for the on-demand approach (Cao et al., 2021),
which requires modifying the architecture and retraining the model when the number of
sensors is changed. Moreover, instead of using a Gated Recurrent Unit (GRU) as in the
pointer network (Vinyals et al., 2015), we use a fully connected MLP, similar to (Hottung
and Tierney, 2019), to avoid the dependence of the MC’s decision on the previous state.
It enables the trained MC to be deployed on the fly into an existing WSN.

5.3.3 Policy Optimization
We train the agent using a well-known policy gradient method in reinforcement learning.
Our objective is to maximize the expected network’s lifetime:

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtR(xt, at)

]
, (5.10)

where pθ(τ) is the distribution of the Markov chain induced by the policy πθ which gen-
erates the trajectories τ . Applying the REINFORCE (Williams, 1992), the gradient of
Eq. (5.10) can be computed as:

∇J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

∇θ log (πθ(at|xt))At

]
, (5.11)

where At =
∑T

l=t γ
l−tR(xt, at) − Vψ(xt) is the advantage function of taking action at

given state xt. This vanilla policy gradient update has no bias but high variance, which
leads to an unstable learning process. To overcome this issue, we use the Generalized
Advantage Estimation (GAE) (Schulman et al., 2015) to reduce the variance caused by
the original advantage function at the cost of introducing bias. Furthermore, due to the
non-convex objective function, the policy gradient usually suffers from local convergence.
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Algorithm 5 Policy gradient algorithm
Input: A set of network instances D, discount factor γ, GAE hyperparameter λ, regular-

ization hyperparameter β.
Output: A trained policy πθ.
1: initialize the actor network with random weight θ.
2: initialize the critic network with random weight ψ.
3: for epoch = 1, 2, ... do
4: for n = 1, ..., N do
5: initialize the environment on the instance Dn ∈ D.
6: generate an episode following πθ:

x0, a0, x1, a1, ..., xT−1, aT−1, xT
7: G← 0, AGAE

t ← 0
8: dθ ← 0, dψ ← 0
9: for t = T − 1, T − 2, ..., 0 do
10: G← γG+Rt

11: δt ← Rt + γVψ(xt+1 − Vψ(xt)
12: AGAE

t ← γλAGAE
t + δt

13: dθ ← dθ −∇θ log(πθ(at|xt)AGAE
t − β∇θH(πθ(·|xt))

14: dψ ← dψ +∇ψ
1
2
∥G− Vψ(xt)∥22

15: end for
16: θ ← Adam(θ, dθ)
17: ψ ← Adam(ψ, dψ)
18: end for
19: end for

We hence use the entropy regularization as suggested in (Mnih et al., 2016) to encourage
the exploration. The following formula computes the final policy gradient:

∇J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

∇θ log (πθ(at|xt))ÂGAE(λ)
t

+ β∇θH(πθ(·|xt))

]
,

(5.12)

where H is the entropy function, β is a hyperparameter controlling the strength of the
regularization, and ÂGAE(λ)

t is the GAE function, which is estimated by:

Â
GAE(λ)
t =

T∑
l=t

(γλ)l(Rl + γVψ(xl+1)− Vψ(xl)), (5.13)

where λ is a hyperparameter controlling the trade-off between variance and bias in the
advantage function, Vψ(x) is the estimated value function at the state x.

During training, we maintain two networks, one for the policy πθ(a|x), and another for
value function Vψ(x) with the trainable parameter θ and ψ, respectively. We use a simple
three-layer fully connected MLP with a ReLU activation in between for the value func-
tion’s network. The policy is updated using gradients computed in Eq. (5.12). Meanwhile,
we use Mean Square Error (MSE) to compute the loss function for the value function.
Both networks are trained with Adam optimizer (Kingma and Ba, 2014). The pseudocode
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Figure 5.3.3: Evaluation of the network lifetime of competing algorithms when varying
the number of sensors, number of targets, or package generation probability.

of our training process is described in Algorithm 5.

5.4 Experiments

In this section, we conduct simulations to demonstrate the merits of our method compared
to existing on-demand charging algorithms. We also discuss the self-organizing capabil-
ity of the wireless sensor networks powered by our mobile charger. The model and the
environment simulation are implemented using the PyTorch and Gym framework. All
experiments are performed in a computer with an Intel(R) Core(TM) i7-6800K CPU @
3.40GHz, 16 GB RAM, and GeForce GTX TITAN X GPU running on Ubuntu Linux
18.04.

5.4.1 Simulation Settings
Network structure. We assume that the sensor network is randomly deployed in a square
area of interest 200×200. The sink is supposed to be located in the center (100, 100) of the
field, and the depot is in the bottom-left corner (0, 0). Initially, all sensors are equipped
with a full and rechargeable battery with the capacity of BSN = 10J . Meanwhile, the
MC, which has a high-capacity battery (BMC = 500J), is initially located at the depot
with an initial energy of 50J . The reason for the low initial power setting is to enforce the
exhausted state of the MC in some first states, which encourages the MC to learn when to
go back depot for recharging in some first episodes. That, in turn, accelerates the learning
process. We set the other parameters as in Table 5.4.1, similar to (He et al., 2013).

Implementation. To train a DRL model, we generate 10000 network instances with
20 sensors and 10 targets. The positions of sensors and targets are drawn in a square area
according to the uniform distribution. We assume that all instances are guaranteed to be
covered and connected initially. The probability of a sensor sending a packet of sensing
data in a unit time period κ (data generation rate) is set at 0.8. For the training parameters,
we set the reward discount γ, the entropy regularization β, and GAE λ to 0.95, 0.02, and
0.9, respectively. We then train one DRL model in these environments and fix the agent
throughout the evaluations.
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Table 5.4.1: Configuration of the simulations.

Parameter Value Unit Comment

n 20 ∼ 30 − number of deployed sensors
m 10 ∼ 20 − number of critical targets
BMC 500 J battery capacity of the MC
ωmove 0.04 J/m ECR of the MC for traveling
ν 5 m/s velocity of the MC
BSN 10 J battery capacity of a sensor
rs 40 m sensing range
rc 80 m communication range
µ 0.04 J/s charging rate

Baselines. We mainly compare our method, namely DRL-TCC, against the existing
on-demand charging algorithms:

• Random: The agent chooses the next charging destination at random. We add a
simple estimation that helps the agent go back to the depot to recharge itself before
being exhausted.

• NJNP (He et al., 2013): A heuristic algorithm with a simple but very efficient dis-
cipline that chooses the spatially closest requesting node as the next charging desti-
nation.

• INMA (Zhu et al., 2018): A modified algorithm of NJNP that selects nodes that
make the least number of other requesting nodes enduring energy deficiency as the
charging candidates. For high charging efficiency, the node with the shortest time
to finish the charging will be selected as the next charging node if the candidate set
has more than one node.

5.4.2 Performance Evaluation

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 5.4.1: The comparison of the aggregated energy consumption rate and the number
of node failures when increasing the number of sensors, number of targets, or data gener-
ation rate.

We assess the ability to prolong the network’s lifetime of the evaluated algorithms on
various topologies. To understand the impact of the number of sensors (n), the number
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of targets (m), and the data generation rate (κ) on the performance of the competing al-
gorithms, we vary one factor while leaving the other two as the default values (n = 20,
m = 10, κ = 0.8). For each configuration, we generate 1000 network instances where
the sensors’ and targets’ positions are drawn from the same uniform distribution. We
then simulate the WRSN operations and report the average cumulative lifetime over all
instances.

To prevent endless simulation, for each instance, we limit the maximum charging ac-
tions of the mobile charger to 2000. We then report the number of instances with respect
to which the system still sustains the full coverage and connectivity after having done the
charging limit. The results are shown in Fig. 5.3.3.

Impact of n, m. We vary the number of sensors from 20 to 30 (Figure 5.3.3a1
and 5.3.3a2), and the number of targets from 10 to 20 (Figure 5.3.3b1 and 5.3.3b2). Gener-
ally, the network lifetime decreases when increasing the number of sensors or targets since
deploying more sensors or targets leads to an increase in network load and MC’s burden.
The high variance can be observed in all settings that demonstrate the dependence on the
network topology of the charging algorithms. However, our method dominates INMA,
NJNP, and Random in all settings. When n = 20, the DRL-TCC extends the network
lifetime to around 36375s on average of 1000 network instances. Meanwhile, the MC
running with NJNP, INMA, and Random strategy, only conserves the network to around
25600s, 22027s, and 3780s, respectively. Moreover, there are 110 out of 1000 network
instances at which the MC with DRL-TCC elongates the network to over 2000 charging
actions. The numbers of NJNP, INMA, and Random are 76, 60, and 0, respectively.

Impact of κ. We vary the data generation rate κ from 0.4 to 1.0 and report the com-
parison in Fig. 5.3.3a3 and 5.3.3b3. Similar to the experiments with sensors and targets,
the average lifetime decreases as the data generation rate increases. However, DRL-TCC
still shows superior results compared to NJNP and INMA. Specifically, the result of DRL-
TCC outperforms 30.57% on average compared to the result given by NJNP and 57.33%
better than the result of INMA. Random continues to show the worst results.

Self-organizing capability. To further probe the self-organizing capability of the pro-
posed method, we report the aggregated energy consumption rate and the average number
of node failures associated with the aforementioned experiments. The former is the av-
erage amount of energy consumed by the sensors in a unit of time and the latter is the
average number of exhausted nodes. We report the average over all instances for both
metrics in Fig. 5.4.1.

We can observe that the aggregated energy consumption rate of DRL-TCC is slightly
lower than others, while the number of node failures is higher than INMA and NJNP when
increasing the network load. Coupled with the superiority in the performance of prolong-
ing the network’s lifetime, it suggests that the DRL-TCC decided to leave non-critical
nodes to be exhausted to reduce the network load. The transmission topology will be
reorganized with a lower network load. This enables the MC to alleviate its burden; it
thus elongates the network’s lifetime while still ensuring coverage and connectivity. No-
tice that, despite showing higher performance in the network’s lifetime than the Random
strategy, the aggregated energy consumption rate of INMA and NJNP has no significant
difference compared to Random.
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5.5 Discussion

This paper studied the connected target coverage problem under the settings of the WRSN
paradigm. We proposed a novel scheme for scheduling the charging path for the MC to
prolong the network lifetime. Our scheme relies on deep reinforcement learning tech-
niques to design a charging policy that takes the network state as the input and outputs the
probability of each charging action. Our model is a combination of attention and pointing
mechanisms that facilitate the operation of a dynamic network where the number of sen-
sors might be changed due to node failures or deployments. The empirical results show
the superiority of our method compared to the existing on-demand algorithms.

One limitation is that the simulation scenario is simplified. The authors did not con-
sider many practical issues that could occur in a real-world deployment, such as sensor
mobility, variations in sensor energy consumption, and the presence of obstacles in the en-
vironment. These factors could affect the effectiveness of the proposed scheme in extend-
ing network lifetime, and it would be interesting to investigate how the proposed approach
performs under more complex and realistic scenarios.

Another limitation is that the proposed scheme relies on a deep reinforcement learning
approach, which requires a large amount of data to train the model. This could be a chal-
lenge in a real-world scenario where data collection might be limited or costly. Moreover,
the proposed scheme may be sensitive to the quality and quantity of the training data, and
it is unclear how the approach would perform with limited training data. These could be
potential directions for future research.
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Conclusion and FutureWork

This thesis studied two emerging problems to prolong the lifetime of WSNs: energy-
efficient routing via relay node placement and adaptive charging schemes in WRSNs. For
each problem, we proposed a novel idea to enhance the efficiency of the wireless network
while ensuring its connectivity and reliability in harsh environments.

Specifically, for the relay node placement problem, we focused on a multi-objective
setting in which the minimum additional RNs are considered for efficient deployment cost,
and balances in energy consumption are considered to prolong the network lifetime. Ad-
ditionally, we introduced a hop count bound as a network delay surrogate constraint for
network reliability. To solve our problem, we proposed a multi-objective evolutionary al-
gorithm with novel objective-oriented heuristics that aid crossover and mutation operators
for better convergence speed. Extensive evaluations with 3D-terrain simulations showed
that our framework has a better trade-off between objectives than existing algorithms.

For the second problem, we studied the connected target coverage problem under the
settings of theWRSN paradigm. We proposed a novel scheme for scheduling the charging
path for the MC to prolong the network lifetime. Our scheme relies on deep reinforcement
learning techniques to design a charging policy that takes the network state as the input and
outputs the probability of each charging action. Our model is a combination of attention
and pointing mechanisms that facilitate the operation of a dynamic network where the
number of sensors might be changed due to node failures or deployments. The empirical
results show the superiority of our method compared to existing algorithms.

In the future, integrating multiple techniques could be a focus to prolong the network
lifetime while ensuring network coverage, connectivity, and data quality. It would be
valuable to analyze the impact of routing strategy on wireless charging, which could facil-
itate the integration of these two techniques. Additionally, researchers could investigate
the practicality and cost-effectiveness of implementing these techniques in real-world sce-
narios. Integrating these techniques could lead to a more robust and sustainable WSN,
which could be utilized in diverse applications, such as environmental monitoring, smart
cities, and precision agriculture. The potential benefits of integrating these techniques
underscore the importance of continued research in this area.
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