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Abstract
Relay node placement with a hop count bound is a crucial problem in enhancing connectivity, lifetime, and reliability in
multi-hop wireless sensor networks. However, existing approaches focus solely on minimizing the number of used relay
nodes without considering the energy consumption among nodes. This work investigates a relay node placement problem in
multi-hopwireless sensor networkswith two objectives:minimize the number of used relay nodes, andminimize themaximum
node energy consumption to prolong the network’s lifetime while still ensuring the network’s connectivity. In particular, we
consider a hop count bound as a delay constraint to elevate the network’s reliability.We propose amulti-objective evolutionary
algorithm called GPrim to solve our problem. The algorithm is a combination of edge-set encoding and NSGA-II framework.
Leveraging problem-specific properties, we introduce objective-oriented heuristics incorporated into initialization, crossover,
and mutation operators to improve the algorithm’s convergence. Simulation results on 3D datasets show that the proposed
algorithm performs significantly better than existing algorithms on all measured metrics.

Keywords Multi-hop wireless sensor networks · Network lifetime · Multi-objective evolutionary algorithm

1 Introduction

Wireless sensor networks (WSNs) can be defined as self-
configured and infrastructure-less wireless networks com-
prised of spatially dispersed sensors for monitoring and
analyzing environmental conditions. The sensed data will be
cooperatively transmitted using either single-hop or multi-
hop communication to a base station, also known as a sink,
where the data can be observed and analyzed. WSNs can be
built of a few to hundreds or thousands of low-cost, low-
power sensor nodes (SNs), typically dispersed at random in
a specified sensor field. Those features enable the network
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to be deployed on the fly and operate unattended, self-
organizing without any pre-existing infrastructure. Thereby,
WSNs have gained significant attention from researchers for
their wide range of applications, including military usage
(Singh et al. 2021), environmental monitoring (Lombardo
et al. 2017; Pule et al. 2017), surveillance systems (Abdulka-
rem et al. 2020), health care (Dey et al. 2017), and public
safety (Muduli et al. 2018; Ramson and Moni 2017; Rashid
and Rehmani 2016).

In the design of any application, prolonging the network’s
lifetime is a crucial problem due to the limited energy power
of the battery deployed in the sensors. When the battery is
fully consumed, a sensor can no longer monitor targets; thus,
the network can become fragmented and non-functional.
Since battery replacement is impossible in many applica-
tions, lowering power consumption is often the most viable
(Yetgin et al. 2017; Chan et al. 2020; Kumar and Agrawal
2021). One of the prominent techniques is to deploy non-
sensing relay nodes (RNs) to communicate with the SNs
(Verma et al. 2015; Lin et al. 2020; Priyadarshi et al. 2020;
Farsi et al. 2019). The key idea is to increase the network’s
capability and balance the energy consumption amongnodes,
enhancing the connectivity, lifetime, and fault tolerance of
the WSN. Besides, deploying additional relay nodes could
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also shorten a long-hop transmission, which is much more
expensive than multiple short-hops (Haenggi and Puccinelli
2005).

Relay node placement problems are generally grouped
into unconstrained and constrained strategies. In the former
strategy, relay nodes can be placed anywhere in the terrain.
In contrast, to avoid unrealistic relay deployments due to
physical constraints, the latter restricts the position of the
additional relay nodes at certain locations, which are deter-
mined in advance. However, both strategies typically form
NP-hard problems (Lloyd and Xue 2006; Misra et al. 2009);
thus, in practical settings, it is hard to obtain an optimal solu-
tion in a suitable amount of time.

Several works have been carried out to find the minimum
number of RNs to enhance the connectivity and fault toler-
ance of aWSN. Ma et al. (2015) investigated the constrained
relay node placement in WSNs and proposed a connectivity-
aware local search algorithm to find the minimum number
of relay nodes so each sensor is covered by at least one
relay node (or two in the double cover setting). In Lee et al.
(2015), the authors assured the fault tolerance of a partitioned
WSN by establishing a bi-connected inter-partition topology
while still deploying the least count of relay nodes. Bagaa
et al. (2017) later studied the constrained placement of relay
nodes and leveraged a Rayleigh block-fading channel and
weighted communication graph to construct a realistic rout-
ing tree with a minimum number of additional relay nodes.
In Hanh et al. (2019), the authors introduced a relay node
placement problem in which three objectives are considered:
target coverage with connectivity and fault tolerance. They
proposed a heuristic algorithm to minimize sensor and relay
nodeswhile ensuring three objectives. The authors in Sheikhi
et al. (2021) proposed the two-phases approach based on
relay node placement to provide multi-path routing and fault
tolerance with higher network connectivity in heterogeneous
WSNs.

In practical settings, multi-hop communication is often
used in large networks to ensure connectivity and prevent
long-hop transmission. However, unlimited hop communi-
cation could cause critical issues in terms of quality of
service (QoS) due to a close relationship between the hop
count and the network’s latency and reliability (Bhattacharya
and Kumar 2014). Thus, a hop count bound is commonly
utilized as a delay constraint in multi-hop WSNs (Bhat-
tacharya and Kumar 2014; Ma et al. 2017, 2018; Liang
et al. 2019). Bhattacharya andKumar (2014) laid the ground-
work for a constrained relay placement problem with hop
count bound, namely rooted Steiner tree-minimum relays-
hop constraint (RST-MR-HC). The authors pointed out the
NP-hardness of the RST-MR-HC problem and proposed a
polynomial time approximation algorithm for the problem.
In Ma et al. (2017) and Ma et al. (2018), the authors used the
hop count to measure delay and reliability to formulate the 2-

connected hop-constrained relay node placement (HCRNP)
problem. Two algorithms, cover-based 1-connected relay
placement (C1NP) and cover-based 2-connected relay place-
ment (C2NP), are proposed to solve this problem. Liang
et al. (2019) later conducted extensive real-world deploy-
ments of WSNs using existing algorithms and then proposed
a set-covering-based algorithm (SCA) to ensure the qual-
ity of communication in the network with a hop count
bound as a delay constraint. In Tam et al. (2021), Tam et al.
(2021), the authors consider maximizing network lifetime in
multi-hop sensor networks in three-dimensional terrains. A
hybrid local search algorithm is proposed to find the near-
optimal solution. In Tam et al. (2021), the multifactorial
evolutionary algorithm is presented to optimize bothwireless
single-hop and multi-hop sensor networks simultaneously.
The authors in Tam et al. (2021) formulate maximizing net-
work lifetime as amulti-objective problem. They propose the
multi-objective evolutionary algorithm based on decomposi-
tion to find the set of non-dominated solutions.

Despite the promising results, a drawback of the afore-
mentioned works is the lack of considering the energy
consumption of nodes in the placement. The energy con-
sumption of the nodes in a WSN is well known to be
imbalanced since it depends heavily on the number of relayed
packets and the distance to the next node in the network
topology; thus, a balanced load among nodes is an essen-
tial factor in enhancing the network’s lifetime (Guleria and
Verma 2019). However, the real-world deployment ofWSNs
requires striking an intricate balance between conflicting
criteria: the network’s lifetime and the cost of deploying
additional relay nodes. Deploying more relay nodes could
increase the network’s capability and provide more pos-
sibilities for load balancing but induce more cost in the
deployment.

To solve this problem, Tam et al. (2020) have con-
sidered two objectives: minimizing the number of relay
nodes and minimizing the maximum node energy con-
sumption to prolong the network lifetime. They proposed
a weighted-sum approach to finding a routing tree that maxi-
mizes the network’s lifetime with minimum additional relay
nodes. However, there are also several disadvantages that
exist within this work. First, they only consider the 2-hop
wireless sensor network, which is only suitable for small net-
works. Second, the weighted-sum strategymust make certain
assumptions when assigning weight values regarding how
‘important’ a criterion is compared to the other.

To overcome these issues, we investigate a node-energy
bottleneck problem in wireless sensor networks with a hop
count bound calledNEBP.This paper aims to establish a com-
munication structure (routing tree) with minimal deployed
relay nodes that prolong the network lifetime while still
ensuring the network’s connectivity.Different fromTamet al.
(2020), we consider a multi-hop scheme with a delay con-
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straint by limiting the maximum number of communication
hops for each SN toward BS. Moreover, we focus instead on
using multi-objective evolutionary algorithms to solve two
objectives simultaneously.

Multi-objective evolutionary algorithms are commonly
used to tackle multi-objective optimization problems. Their
advantage is the ability to provide optimal or approximate
Pareto fronts of non-dominated solutions (also known as
the Pareto-efficient or Pareto set) in the objective function
space. From these solutions, decision-makers can select from
a diverse range of design options. In evolutionary-based
approaches, a population of candidate solutions ismaintained
and evolved toward better solutions. There are twomain types
of representation of an individual in the population: indirect
and direct.

In an indirect representation, the candidate solution’s
space (phenotypic space) can be mapped to a genetic space
where a genetic representation of a solution is the genotype
and its decoded solution is called the phenotype. Several
genotypic representations are widely used to represent a
routing tree in a WSN, including Prufer encoding (Prüfer
1918), link and node biased (Palmer and Kershenbaum
1994), Network random keys (NetKeys) (Rothlauf et al.
2002). Recently, Prakash et al. (2020) also leveraged a per-
mutation encoding with a heuristic decoder to propose a
hybrid multi-objective evolutionary algorithm (HMOEA) to
find a minimal spanning tree with a minimum diameter.
The advantage of genotypic representation is the simplicity
of leveraging standard search operators on the evolutionary
paradigms (Nayyar et al. 2018). However, finding the proper
representation is the biggest challenge of this approach since
the genotypic representations often suffer from the low local-
ity (small changes in the code can lead to large changes in
the decoded tree) (Prüfer 1918), or infeasible and redundant
representations (Rothlauf et al. 2002; Prakash et al. 2020).

Direct representation can be considered the case when the
genotypic space is the same as the phenotypic space (Roth-
lauf and Rothlauf 2006). In direct representation, we can
use a simple encoding method such as edge sets encoding
(Raidl and Julstrom 2003) and then perform a problem-
specific crossover and mutation directly on phenotypes to
create new offspring. The main advantage of this scheme
is the ability to apply a heuristic to guide search operators
(Hao and Liu 2017). Therefore, this paper shall propose an
objective-oriented heuristic aiding the standard operator in
the direct tree representation to solve the NEBP. In addition,
we conducted an extensive experiment to demonstrate the
effectiveness of our approach compared to the other encod-
ing methods mentioned above.

Our contributions are listed point by point:

• First, we present a node-energy bottleneck problem
in wireless sensor networks with a hop count bound

(NEBP), which considers two objectives: (i) minimize
the number of used relay nodes; (ii) minimize the max-
imum node energy consumption to prolong the network
lifetime. In particular, we consider a delay constraint by
limiting the maximum number of communication hops
for each SN toward BS.

• Secondly, we propose GPrim to solve node-energy
bottleneck problem in multi-hop wireless sensor net-
works (NEBP). The novelties of the proposed guided
prim NGSA-II (GPrim) can be summarized as follows:
(i) according to the problem-specific characteristics,
encoding-based edge-set and decoding methodologies
are developed to represent the solution space; (ii) we
leverage the problem’s energy property to develop a
heuristic Prim-based crossover and twomutations includ-
ing energy-oriented mutation and relay-oriented muta-
tion to reduce ineffective moves from standard search
operators.

• The proposed algorithm is validated against different
encoding methods, including permutation, prufer code,
NetKeys, and edge sets. The comparison is delivered on
various standard metrics.

The rest of this paper is organized as follows: In Sect. 2,
the problem description and notations are given. In Sect. 3,
we present our proposedmethods,while Sect. 4 illustrates the
simulation results. Finally, we conclude the paper by sum-
marizing our main contributions and giving an idea of our
future work.

2 Problem statement

2.1 Network structure

We consider the deployment of a wireless underground sen-
sor network as in Tam et al. (2020), with a multi-hop network
structure as described in Wu and Liu (2013). A network
includes a base station (BS), a set of SNs, and a set of
RNs deployed in three-dimensional terrains (this paper uses
notations per the digital elevation model (DEM) standards
Florinsky 2016).We consider both types of connection: relay
nodes—base station and sensor nodes—sensor nodes/relay
nodes. Sensing data are gathered by SNs and sent to a BS
through a relay node or other sensors. The data transmitted
to relay nodes can only be forwarded directly to the base
station rather than other sensors or relays.

We assume the sensor network is static, meaning SNs have
already been deployed, and a finite set of potential positions
for RNs is known in advance. The base station is a sink node
deployed at the central terrain with an unlimited power sup-
ply while SNs and RNs have the same initial energy, which
cannot be replenished. Energy consumption is composed of
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Table 1 Network parameters

Parameter Value

εelec 50n J/bit

εfs 10pJ/bit/m2

εmp 0.0013pJ/bit/m4

εDA 5pJ/bit

dissipated energy by the receiver and the transmitter. The
amount of consumption depends on the number of SNs send-
ing data through the node, whereas the transmission power
is proportionate to the distance of the transmit-receive pair.

2.2 Energymodel

Numerous energy dissipation models in WSNs are studied
with different assumptions. In this work, we use the same
energy model as in Gawade and Nalbalwar (2016), which
accounts for the dissipated energy at both the receiver and
transmitter during a transmission. The free space model (d2

power loss) is used for proximal transmissions, and themulti-
path fading model (d4 power loss) is considered for large-
distance transmissions. Thus the energy dissipated by the
transmitter for transmitting an l-bit packet to a distance d is
given by:

Ẽt (d) =
⎧
⎨

⎩

lεelec + lεfsd2 if d ≤ d0 ≤ rc,

lεelec + lεmpd4 if d0 < d ≤ rc,

∞ if rc < d,

(1)

where d0 =
√

εfs
εmp

is the distance threshold for swapping

amplification models and rc indicates the range with which
a node can communicate. In other words, no connection will
be established among the nodes out of this range.

The energy consumption of the receiver to receive an l-bit
packet is calculated as follows:

Ẽr = lεelec. (2)

The dissipated energy of a node receiving η packets and
transmitting them to the parent node is calculated by the
following formula

Ẽ(η, ζ, d) = ηẼr + (η + ζ )Ẽt (d), (3)

where Ẽt (d), Ẽr are calculated as in Eq.1 and 2, respectively.
The argument ζ is equal to 1 if the node is a sensor node, and
0 otherwise. The argument d is the transmission distance.
The network parameters shown in Table 1 are set as in Wu
and Liu (2013).

2.3 Problem formulation

We consider a wireless sensor network including a set of
deployed sensor node S = {s1, s2, ..., sns }, a set of potential
relay nodes R = {r1, r2, ..., rnr } and a base station denoted as
s0. The position of each node is represented as a single point
in a 3D space that is interpolated from the DEM model. The
communication between two nodes can only be established
if the Euclidean distance between them does not exceed the
communication range rc.

This paper aims to establish a communication structure
(routing tree)with aminimal number of deployed relay nodes
that prolongs the network lifetimewhile still ensuring the net-
work’s connectivity. In other words, we aim to construct the
unique path for each sensor transmitting sensing data to BS
such that with the minimum number of deployed relays, the
maximum energy consumption of every node in the network
is minimized. Besides, to avoid the problem of unbalanced
energy consumption caused by multi-hop transmission, we
also consider the max-hop constraint h̄ that limits the max-
imum number of communication hops for each SN toward
BS.

We denote the problem as NEBP. The formal formulation
below models the desired structure as a Steiner tree (Hwang
and Richards 1992).

Input:

• G = (V , E) is an undirected graph, where V = S ∪ R ∪
{s0} is set of vertices in the graph, S is set of sensor nodes,
R is set of relays, and s0 corresponds to base station.

• N = S ∪ {s0} denotes the set of terminal nodes.
• rc ∈ R

+ is the communication range.
• d : V × V → R

+ is the distance function. An edge
e = (u, v) ∈ E only if d(u, v) ≤ r0.

• h̄ ∈ N
+ is the max-hop constraint.

Output: A valid output is a Steiner tree (Definition 2.1)
T = (VT , ET ) of graph G that spans the set of terminal
nodes N = S ∪ {s0}.

Constraints:

• Every selected RNs (Steiner points) directly connect to
base station s0 (denoted as node 0)

(s0, v) ∈ ET ∀v ∈ VT ∩ R.

• The unique path from a specified root s0 to any other node
has no more than h̄ hops (edges)

|path(s0, v)| ≤ h̄ ∀v ∈ VT ,

where |path(u, v)| denotes the length of the unique path
between two nodes u and v.
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Fig. 1 An example of a network
with 3 relays, 6 sensors, and
max-hop constraint is 3

Figure 1 shows an example of a network with three relays
and six sensors.

Objectives: TheNEBP seeks a Steiner tree T = (VT , ET )

in the valid output space that optimizes two following objec-
tives:

• Minimize the number of selected RNs (Steiner node):

|VT \ N | → min . (4)

• Minimize the maximum energy consumption of each
node:

max
v∈VT \{s0}

Ẽv(η, ζv, d) → min, (5)

where Ẽv is calculated as Eq.3 in which η is the number
of descendants of v, ζv is a binary number that indicates
whether v is the sensor (1) or not (0) and d denotes the
distance from v to its parent.

Definition 2.1 (Steiner tree) Given an undirected graph G =
(V , E) and a set of terminal nodes N ⊆ V . A tree T =
(VT , ET ) is called a Steiner tree if it contains no cycles and
spans all terminal nodes, N ⊆ VT ⊆ V . The set of nodes
VT \N is called Steiner nodes.

3 Proposed approach

We propose a phenotype-based multi-objective evolutionary
algorithm (MOEA) named GPrim to solve the NEBP. In this
scheme, the population is first initialized by a random-tree
algorithm in which the candidate solutions are encoded by
the edge sets encoding method. Then, we apply the NSGA-II
strategy (Deb et al. 2002) to maintain and evolve the popula-
tion toward better solutions using the problem-specific search
operators. We leverage the problem’s energy property to
develop a heuristic Prim-based crossover and two objective-
orientedmutations to reduce ineffectivemoves from standard

search operators. The specifics of solution representation, ini-
tialization, crossover, and mutation are described below.

3.1 Solution representation

Although a direct representation needs no mapping between
the phenotypic and genotypic space, a data structure is still
necessary for processing (Li 2001; Rothlauf and Rothlauf
2006). Since the search operators are performed directly on
the phenotype representation, limiting infeasible and redun-
dant outputs depends on search operators rather than the
representation itself. The representation now only affects the
memory and running time of the algorithm. Thus, we use
edge-set encoding on this problem for its simplicity. This
encoding can act as the basis for evaluating the solution or
be converted to an adjacency list in linear time.

Since the aim of the NEBP, the problem is to find a Steiner
tree that can connect all SNs to the BS, the number of vertices
in the solutions is not consistent. For simplicity, we initialize
solutions with the connections from the BS to every RN, and
this structure is maintained in all candidate solutions in the
population. The RNs with no connection to any SNs are later
removed from the output structure by the decoder.

3.2 Initialization

In the hop-constrained spanning tree problem, the number of
hops in a rooted tree (h) is bounded by its diameter (d):

d/2 ≤ h ≤ d.

Therefore, we leverage PrimRST (Raidl and Julstrom 2003)
to initialize the candidate solutions, as PrimRST tends to
generate low-diameter trees which are more likely to sat-
isfy the max-hop constraint. The PrimRST algorithm uses
Prim’s scheme to greedily create a spanning tree from a start
node by adding an adjacent node at random, regardless of
its weight. Moreover, we adapt PrimRST to consider max-
hop constraint by maintaining nodes’ depth while creating a
tree. We call this algorithm as HCPrimRST (Algorithm 1).
Applying HCPrimRST with max-hop constraint may lead
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to an invalid, non-connected structure. The initialization is
thus divided into two phases. The first phase initializes edges
T = {(0, v) ∈ E |v ∈ R} and runs the algorithm with
max-hop constraint; and in the second phase, we relax its
constraint and continue to build the tree obtained from the
first phase to get a valid connected tree.

Algorithm 1: Random spanning tree generation with
max-hop constraint
Input : The set of initialized edges T

The set of vertices V
The set of potential edges E
The max-hop constraint h̄

Output: The set of used edges T

1 function HCPrimRST( T , V , E, h̄)
2 C ← {u, v|(u, v) ∈ T } ; // set of connected

nodes
3 d ← depth of vertices in partial tree T ; // by dfs from

root 0
4 A ← {(u, v) ∈ E |u ∈ C, v /∈ C} ; // eligible edges
5 while A �= ∅ do
6 Choose (u, v) ∈ A at random ;
7 A ← A \ (u, v) ;
8 if v /∈ C and du < h̄ then
9 T ← T ∪ (u, v) ;

10 C ← C ∪ {v} ;
11 A ← A ∪ {(v,w) ∈ E |w /∈ C} ; // add v’s

adjacency to A
12 dv ← du + 1 ;

13 return T

3.3 Crossover operator

For crossover, we could apply directly the HCPrimRST
algorithm to create an offspring Tcr from a combined graph
Gcr = (V , ET1 ∪ ET2), where T1, T2 are the parental trees.
However, this algorithm might create many infeasible or
ineffective offsprings due to its random nature. We delin-
eate in this section an energy-aware modification of the
HCPrimRST-based crossover to prioritize the offspring’s
structures that use less energy power than their parents while
maintaining the diversity of the offspring.

Following the energy model (3), we notice that the dissi-
pated power of a node is affected by three factors, including
the number of packets it carries (ηu) (descendant nodes),
whether it is a sensor or relay (ζu ∈ {0, 1}), and the distance
of the transmit-receive pair to its parent (ξ(d)):

Ẽu = ηu(Ẽr + Ẽt (d)) + ζu Ẽt (d) (6)

⇔ ηu = Ẽu − ζu Ẽt (d)

Ẽr + Ẽt (d)
. (7)

Equation (6) suggests that if we know the maximum
energy a node can use and its parent, we also know the max-
imum number of packets it can carry. Let us assume that the
network has an energy limit of Ẽmax . Before adding an edge
(u, v) where u ∈ C, v /∈ C, du < h̄, we can check if this
causes the network to exceed the energy limit by tracking
the number of descendants that a node in the partial tree can
receive.

We denote �u as the number of descendants a node can
have without exceeding Ẽmax . Pu is a set of u’s parent nodes
and itself. An edge (u, v) is considered valid if �u > 0.
Connecting (u, v) reduces the capacity of the nodes in Pu by
1 unit:

�t = �t − 1 ∀t ∈ Pu . (8)

Thus, �v is calculated by:

�v = min {ηv,�u}, (9)

where ηv is calculated as Eq. (6) with the energy limit Ẽmax .
For example, with the graph presented in Fig. 2, two poten-
tial edges connect node 9 to the partial tree: (7, 9) and
(8, 9). However, due to �7 = 0, connecting the edge (7, 9)
inevitably causes one of the parents of node 7 to be exhausted.
Thus, the edge (8, 9) is prioritized in this case. Note that
adding a child affects all parent nodes. Thus, the maximum
number of descendants of a node does not exceed its parents,
that is

�u = min
t∈Pu

�t . (10)

To reduce computation, an update of node u (Eq. 10) is only
executed when it is necessary. In the example in Fig. 2, �4

should be updated to 2. However, it is unnecessary until
another edge of node 4 is involved. The operator can be done
in O(nh̄).

3.4 Mutation operator

One of the most widely used mutations for tree-based prob-
lems is edge insertion mutation (Raidl 2000). The tree is
mutated by randomly adding a non-tree edge (creating a
cycle) and then randomly deleting a tree edge from the cre-
ated cycle (removing the cycle). Thismutation can be applied
to most tree-based problems. However, exploring neighbors
randomly also becomes the drawback of this mutation. In
most cases, it produces ineffective moves, which lead to
invalid or lower-quality solutions, especiallywhen approach-
ing optimal PF.

This subsection presents two problem-specific mutations
that improve the algorithm’s convergence speed. The first
mutation targets energy usage, while the second aims to
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Fig. 2 An example of
calculating maximum number of
children. Dashed lines denote
potential edges

reduce the number of used relays. These mutations are used
simultaneously and chosen randomly for each offspring with
predefined probabilities.

3.4.1 Energy-oriented mutation

Let us look closer into the edge insertion mutation. A
mutated solution can be represented by its direct parent and
a pair of added edge e+ = (u+, v+) and deleted edge e− =
(u−, v−). Both edges are chosen at random, most of which
lead to a worse solution or violate the max-hop constraint.
However, we can leverage each node’s maximum number of
descendants� (Sect. 3.3) to find and prioritize pairs of edges
that ensure a better solution.

Denote Ẽmax as the maximum energy usage on the par-
ent network T and φ as the node using the most energy. The
energy usage ofφ is composed of two factors.One is the num-
ber of descendants that φ has to carry, and one is φ’s distance
to its parent in the network. Reducing the maximum energy
usage of the network requires one of two factors to decrease.
Consider the subtree Tφ = (Vφ, Eφ), which includes φ and
its children.We define potential added edge (u, v) as the edge
that connects a part of subtree Tφ to the remaining subtree
T \Tφ and satisfies the following constraints:

u ∈ Vφ, v ∈ V \ Vφ, ηu ≤ �v, hu + dv + 1 ≤ h̄,

where du, hu, ηu is depth (from root to u), maximum hop
(from u to farthest leaf) and the number of children of node
u, respectively. Also, we refer to pu as the parent of u in the
parental tree. Then, adding a potential added edge (u, v) and
deleting (u, pu) creates a new tree that satisfies the max-hop
constraint and has lower energy usage in node φ. Figure3
shows an example of this process.

When combining the above heuristic with edge insertion
mutation, we find a set of potential edge pairs in the tree. If
this set is not empty, we randomly choose one pair and create
a mutated tree. Otherwise, the original edge insertion muta-
tion is used to complete the mutation operator. Algorithm 2

presents this energy-oriented mutation procedure. The com-
plexity of this mutation is O(max(nh̄, m)).

Algorithm 2: The energy-oriented mutation algorithm
Input : The edge-set of parental tree T

The set of vertices V
The set of potential edges E
The energy limit Ẽmax
The max-hop constraint h̄

Output: The set of edges in the offspring T

1 Find a node that uses most energy φ in parental tree T ;
2 Run depth-first search in parental tree T calculate
3 Vφ ∈ V is a set of children node of φ in parental tree;
4 � ← the maximum number of children with the energy limit

Ẽmax ;
5 d ← the depth of nodes ; // from root to node
6 h ← the maximum hop of nodes ; // from node to

leaf
7 η ← the number of children of nodes;

8 F = {(u, v) ∈ E |u ∈ Vφ ∧ v ∈ (V \ Vφ) ∧ ηu ≤
�v ∧ hu + dv + 1 ≤ h̄}; // A set of potential edges

9 if F �= ∅ then
10 Choose an edge (uφ, vφ) ∈ F at random;
11 T ← T \ (uφ, puφ ) ; // puφ is parent of uφ in

parental tree
12 T ← T ∪ (uφ, vφ);

13 else
14 Choose an edge (u+, v+) ∈ E \ T at random;
15 T ← T ∪ (u+, v+);
16 Find a set of edges C in the created cycle;
17 Choose an edge (u−, v−) ∈ C ;
18 T ← T \ (u−, v−)

19 return T

3.4.2 Relay-oriented mutation

Due to the tendency toward star-like structures, PrimRST and
HCPrimRST uses more relays on average than KruskalRST
and RandWalkRST (Fig. 5). In comparison, both crossover
and energy-orientedmutation focus on optimizing the energy
objective. The optimization of the number used relays
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Fig. 3 An example of the
energy-oriented mutation. The
dashed blue lines denote the
potential added edges

Fig. 4 An example of the
relay-oriented mutation

Fig. 5 The distribution the number of used relays generated by different
random-tree algorithms on a graph with 100 relays and 100 sensors

depends on the distribution of the random-tree algorithm
implemented in the initialization and crossover operator. We
propose a more direct mutation strategy for reducing the
number of used relays: one random relay from the parental
tree is disabled, while its children (sensors) are connected
to the remaining relays. The HCPrimRST algorithm is first
applied with an energy limit as in the crossover operator.
Constraints are later relaxed to ensure that all sensors are
connected. An example of this mutation is shown in Fig. 4
and a pseudocode is provided in Algorithm 3 (Fig. 5). This
mutation can be done in O(nh̄).

Algorithm 3: The relay-oriented mutation algorithm
Input : The edge-set of parental tree T

The set of vertices V
The set of potential edges E
The energy limit Ẽmax
The max-hop constraint h̄

Output: The set of edges in the offspring T

1 Find a set of used relays � in the parental tree T ;
2 Choose one relay φ ∈ � at random.;
3 � ← � \ {φ};
4 Find a set of children node Vφ of φ;
5 T ← T \ {(u, v) ∈ T |u ∈ Vφ ∨ v ∈ Vφ};
6 E ← E \ {(u, v) ∈ E |u ∈ (Vr \ �) ∨ v ∈ (Vr \ �)};
// disable unused relays

7 HCPrimRST(T , S ∪ �, E, h̄, Ẽmax );
8 HCPrimRST(T , S ∪ �, E, h̄,∞);
9 HCPrimRST(T , S ∪ �, E,∞,∞);

10 return T

4 Experiments and results

4.1 Experiment settings

In our experimental studies, network parameters are set as in
Tam et al. (2020) where network constants are as in Table 1
with parameters l = 4000 and d0 = εmd ÷ εfs. We also
assume that all sensors and relays have the same radius
r = 25m. All algorithms were implemented in Python using
the GeneticPython (Bui 2020) and NumPy (Van Der Walt
et al. 2011) frameworks.1 All experiments are performed in
a single Intel Xeon(R) E-2124G 3.40 GHz CPU with 16 GB

1 Source codes and datasets: https://github.com/ngocbh/nebp_wsn.
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Fig. 6 Height heatmaps of terrains

Table 2 Description of network
instances. The last column
refers to the density of the
communication graph

Instance Node distribution Terrain Terrain size No.relays No. sensors Density

S1 NIn1 Gaussian T1 200 × 200 20 20 0.53

NIn2 Gaussian T2 200 × 200 20 20 0.61

NIn3 Gaussian T3 200 × 200 20 20 0.53

NIn4 Uniform T1 200 × 200 20 20 0.53

NIn5 Uniform T2 200 × 200 20 20 0.53

NIn6 Uniform T3 200 × 200 20 20 0.48

S2 NIn7 Gaussian T1 200 × 200 40 40 0.28

NIn8 Uniform T2 200 × 200 40 40 0.1

NIn9 Gaussian T2 500 × 500 100 100 0.19

NIn10 Uniform T3 500 × 500 100 100 0.17

NIn11 Gaussian T3 1000 × 1000 200 200 0.52

NIn12 Uniform T1 1000 × 1000 200 200 0.15

S3 NIn13 Gaussian T1 200 × 200 40 80 0.2

NIn14 Uniform T2 200 × 200 40 80 0.18

NIn15 Gaussian T2 500 × 500 100 200 0.1

NIn16 Uniform T3 500 × 500 100 200 0.09

NIn17 Gaussian T3 1000 × 1000 200 400 0.28

NIn18 Uniform T1 1000 × 1000 200 400 0.28

RAM running on Ubuntu Linux 16.04. No extra paralleliza-
tion apart from the default NumPy acceleration is used.

4.2 Datasets

We generate 18 network instances according to previous
works (Hai and Le Vinh 2017; Tam and Hai 2018; Tam et al.
2020). Three real 3D terrain datasets in Vietnam (Fig. 6) are
used as the area to place sensors and relays. All terrains are
defined according to the digital elevation model (DEM) stan-
dard. The sensors and potential relay nodes are deployed in
each terrain according to two distributions (Gaussian and
Uniform).

We split the data into three sets: S1, S2, and S3. S1
includes 6 instances with 20 RNs and 20 SNs. S2 contains
6 instances with increasing SNs in the network. S3 uses the
same settings as S2 with twice the SNs in the network. The

usage of these sets is discussed in detail in Sect. 4.5. Details
of the network instances are shown in Table 2.

4.3 Performancemetrics

Comparing Pareto fronts is unfortunately not very straight-
forward.No singlemetric can best cover all aspects (cardinal-
ity, convergence, diversity) (Konstantinidis and Yang 2011;
Riquelme et al. 2015; Audet et al. 2020). Thus, this study
considers the following five metrics:

• Inverted Generational Distance (I G D) (Coello and
Cortés 2005):Given anoptimal Pareto front (PF) P , I G D
of a approximation set S is calculated as:

I G D(S, P) = 1

|P|

⎛

⎝
∑

p∈P

dl
p

⎞

⎠

1
l

,
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where dp = mins∈S ‖ f (s) − f (p)‖2 and l = 2 (in
general). I G D can capture both the convergence and
diversity of approximationPFs.However, thismetric can-
not be used without an optimal PF.

• Hypervolume (H V ) (Zitzler and Thiele 1999): As
described in Audet et al. (2020), the hypervolume indi-
cator is the volume of the space dominated by the Pareto
front approximation S and delimited from above by a ref-
erence point r ∈ Rm such that for all s ∈ S, s ≺ r . The
hypervolume is given by:

H V (S, r) = λm

(
⋃

s∈S

[s, r ]
)

,

where λm is the m-dimensional Lebesgue measure. In a
bi-objective problem (m = 2), hypervolume can easily
be obtained in linear time.

• Convergence of two sets (C) (Zitzler and Thiele 1998):
This metric is widely used to capture the convergence of
two approximation sets. It is defined by the ratio of a set
dominated by others divided by its cardinality:

C(A, B) = |{b ∈ B|∃a ∈ A : b ≺ a}|
|B| .

IfC(A, B) = 1, all solutions of B are dominated by solu-
tions of A. Note that we have to compute both C(A, B)

and C(B, A) since their sum is not always equal to 1.
• Delta-metric (
) (Deb et al. 2002): This is a unarymetric
used tomeasure a PF’s diversity. In bi-objective problem,

(S) of a PF S is defined as:


(S) = d f + dl + ∑|S|−1
i=1 |di − d̄|

d f + dl + |S|d̄ ,

where d f and dl are the Euclidean distances between
the extreme solutions in one objective and the bound-
ary solutions of S. di is the Euclidean distance between
consecutive solutions of approximation set S and d̄ is
the mean of di . The smaller value of 
(S) gives a better
spread of the PF.

• Cardinality (O N V G) (Schott 1995): This is a straight-
forward metric computing a PF’s cardinality

O N V G(S) = |S|.

Since theNEBP is a bi-objective problem, one ofwhich is
discrete with a low range, O N V G is essential tomeasure
the spread of PFs.

4.4 Baselines

We compare our proposed method with five algorithms,
including different encoding methods and search operators
that are widely used in tree encoding problems:

• HMOEA:We adopt a hybridmulti-objective evolutionary
algorithm (HMOEA) proposed in Prakash et al. (2020)
for bi-ObjectiveMinimumDiameter-Cost Spanning Tree
(bi-MDCST) problem to tackle theNEBP.Apermutation
encoding with a heuristic CBTC-based decoder is pro-
posed to represent several solutions of varying relay’s
constraint in which the order crossover and swap muta-
tion are used for reproduction.

• Prufer encoding (Prufer): Prufer encoding is used in con-
junction with two common search operators in integer
chromosomes: uniform crossover and swap mutation. To
reduce the infeasible ratio caused by incomplete graphs,
we repair the decoded edges using only valid edges with
KruskalRST to complete the candidate tree.

• NetKeys encoding (Netkeys): In this scheme, we encode
a tree using general Network RandomKeys with uniform
crossover and swap mutation, as suggested in Rothlauf
et al. (2002).

• Edge-set and PrimRST (Prim): This algorithm is based
on the application of edge sets to the degree-constraint
minimumspanning tree problem (d-MST) as presented in
Raidl and Julstrom (2003). In the recombination process,
we use PrimRST to create offsprings from the parents’
edges. In the mutation, we use the edge insertion muta-
tion, as described in Sect. 3.4.

• Edge-set and KruskalRST (Kruskal): All settings are the
same as in the Prim-based approach, but KruskalRST is
used instead of PrimRST in the recombination.

• Edge-set and Guided Prim (GPrim):This is our proposed
algorithm presented in Sect. 3.

In these approaches, the first three algorithms (HMOEA,
Prufer and NetKeys) are indirect representations, while
the rest (Prim, Kruskal, and GPrim) are direct representa-
tions. Leveraging the discreteness of one of the objectives,
HMOEAmaintains an external population to store the Pareto
front. Each offspringwill be evaluated in different constraints
of relays to update the Pareto front as well as the main
population, where the tournament of size three is used to
select the parents. Meanwhile, the remaining algorithms are
applied to the NSGA-II structure with binary tournament
selection.Note that ourmethods can also apply to othermulti-
objective optimizations (MOOs) algorithm structures such as
MOEA/D (Cheng et al. 2015), SPEA2 (Zitzler et al. 2001).
However, such combinations are reserved for future works.
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Fig. 7 Feasible ratio of the
population on various max-hop
constraints

Table 3 Performance of competing algorithms on the set S1

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

(a) Inverted Generational Distance (I G D)

NIn1 0.039 ± 0.007 0.037 ± 0.005 0.039 ± 0.006 0.033 ± 0.008 0.036 ± 0.004 0.000 ± 0.000

NIn2 0.043 ± 0.011 0.038 ± 0.004 0.038 ± 0.005 0.033 ± 0.007 0.036 ± 0.007 0.000 ± 0.000

NIn3 0.035 ± 0.006 0.036 ± 0.005 0.033 ± 0.007 0.034 ± 0.006 0.035 ± 0.003 0.000 ± 0.000

NIn4 0.033 ± 0.007 0.036 ± 0.006 0.036 ± 0.007 0.034 ± 0.007 0.039 ± 0.005 0.000 ± 0.000

NIn5 0.034 ± 0.004 0.038 ± 0.007 0.039 ± 0.004 0.032 ± 0.005 0.037 ± 0.007 0.000 ± 0.000

NIn6 0.035 ± 0.005 0.036 ± 0.004 0.037 ± 0.006 0.033 ± 0.007 0.034 ± 0.006 0.000 ± 0.000

(b) Cardinality (O N V G)

NIn1 9.90 ± 0.831 7.90 ± 1.375 8.30 ± 1.269 9.90 ± 2.256 8.90 ± 0.943 20.00 ± 0.000

NIn2 9.40 ± 1.281 8.00 ± 1.095 8.60 ± 1.281 9.60 ± 1.744 9.40 ± 1.625 20.00 ± 0.000

NIn3 10.30 ± 0.900 8.00 ± 1.183 10.40 ± 1.562 9.30 ± 1.616 9.30 ± 0.900 20.00 ± 0.000

NIn4 10.30 ± 1.100 8.40 ± 1.428 8.70 ± 1.269 9.10 ± 1.700 8.30 ± 1.100 20.00 ± 0.000

NIn5 10.30 ± 1.005 8.20 ± 1.400 8.70 ± 0.781 9.70 ± 1.552 8.60 ± 1.625 20.00 ± 0.000

NIn6 10.70 ± 0.781 7.50 ± 1.025 8.70 ± 1.487 10.00 ± 2.449 9.70 ± 1.900 20.00 ± 0.000

Bold values indicate the best values

4.4.1 Initialization analysis

As discussed in Sect. 3.2, KruskalRST and PrimRST
are biased toward star-like structures while RandWalkRST
gives an unbiased initialization (Raidl and Julstrom 2003).
In order to examine the ability to generate valid solutions
in the hop-constraint problem, we run four initializations
(PrimRST, KruskalRST, RandWalkRST, HCPrimRST) on
two instances (NIn9 and NIn15) with various max-hop con-
straint h̄. Each algorithm is invoked 1000 times for each value
of h̄. Figure7 shows the feasible solution ratio of the initial-
izations on a different value of h̄. The HCPrimRST gives
the best feasible ratio in all max-hop constraints. The feasi-
ble ratio of the remaining methods (PrimRST, KruskalRST,
and RandWalkRST) is inversely proportional to the aver-
age diameter in the results shown in Raidl and Julstrom
(2003). For example, when h̄ = 14, HCPrimRST produces
valid solutions 45% of the time. This metric for PrimRST is
2.8%. KruskalRST and RandWalkRST produced no feasible
solutions on average. If KruskalRST or RandWalkRST was

applied in this case, it might leave the algorithmwith no valid
solutions in the first few generations.

Based on the above results, in the following experiments,
HCPrimRST will be used as the initialization for all com-
pared algorithms.

4.4.2 Efficiency evaluation

In this experiment, we look into each algorithm’s efficiency
compared to an approximation of optimal PF. We use six
small instances in the set S1. Optimal PF is approximated by
running each algorithm 100 times with different seeds, each
with 1000 generations. The best solutions are combined to
generate a final approximation PF.

Table 3 summarizes the results of competing algorithms
through three metrics (I G D, and O N V G). GPrim out-
performs HMOEA, Prufer, NeyKeys, Prim, and Kruskal
with regard to both convergence and diversity. GPrim’s PF
approaches the approximation PF in most cases. Between
standard direct and indirect representations, Prufer showed
the worst results in the aforementioned aspects, while
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NetKeys and HMOEA provide better results than stan-
dard direct representations (Prim, Kruskal). In Fig. 8, we
show the convergence profiles of I G D values on network
instance NIn1. GPrim again shows faster convergence than
the remaining approaches, while the standard direct repre-
sentations (Prim and Kruskal) show promising results.

Considering the performance in the number of non-
dominated solutions, GPrim consistently finds the maximum
value of OV N G. This result demonstrates the effectiveness
of the relay-oriented mutation. HMOEA, NetKeys, Prim,
and Kruskal perform similarly and fluctuate around 9 solu-
tions for each instance. Meanwhile, Prufer performs worst
on OV N G.

4.5 Results and discussions

We design four main experiments to study the behavior of
the approaches through four aspects:

• Efficiency: In this experiment, we use six instances in S1
andfind an approximation of optimal PF for each instance
by combining the results of the six algorithms with a vast
number of generations. We later compare the algorithms
on the IGD metric, as well as their convergence process
through each generation.

• Scalability: This experiment uses 12 instances in sets S2
and S3, to study the behavior of algorithms as network
complexity increases.

• Sparsity of feasible solution: This experiment aims to
investigate the ability to handle sparse solution spaces by
reducing the max-hop constraint on each instance in all
datasets.

• Density of the network: Various communication ranges
are used to examine the impact of the graph’s density on
the algorithms.

4.5.1 Parameter selection

We set the population size to 100 while the number of gener-
ations is set to 100. The max-hop constraint is set depending
on the complexity of the network instance (see Table 4). Each
experiment is performed over 10 independent runs with dif-
ferent seeds.

Since each algorithm has different crossover andmutation
operators, we perform a grid search to select crossover and
mutation probability. Five random instances are generated,
on which the probabilities are searched independently for
each algorithm. Table 5 shows the resulting settings.

Table 4 The max-hop constraint (h̄) on each type of dataset. All
instances are ensured to have valid solutions

Type 1 Type 2 Type 3 Type 4

h̄ 6 8 12 16

Table 5 The operator’s probability of each algorithm. pc is the
crossover probability and pm is the mutation probability. For GPrim,
pm represents a pair of energy-oriented and relay-oriented mutation
probability

HMOEA Prufer NetKeys Prim Kruskal GPrim

pc 0.6 0.9 0.9 0.9 0.9 0.5

pm 0.4 0.5 0.1 0.5 0.5 (0.5, 0.5)

4.5.2 Scalability evaluation

This experiment aims to investigate the behavior of the algo-
rithms on different structures of the graph, especially when
the graph size is expanded. We use 12 network instances
in sets S2 and S3 with different distributions and sizes to
demonstrate the effectiveness of the algorithm in various
topologies of the graph. Since finding the approximation PF
costs a massive amount of the computation power on com-
plex network instances, we consider the convergence of two
sets (C-metric) and delta metric (
) instead of I G D.

In terms of convergence,we use box plots similar toZitzler
and Thiele (1999) to summarize C-metric values of different
runs (see Fig. 9). Results show that GPrim produces dominat-
ing PFs over other algorithms in most cases, with C values
asymptotic to 1 in most test cases. Specifically, GPrim cov-
ers more than 88% on average of the fronts computed by
HMOEA,while only 0.03%ofwhichdominates the solutions
ofGPrim. In several instances (NIn11, NIn12, NIn17, NIn18),
HMOEA produces some better solutions over GPrim with
fewer relays due to themechanism that decodes and evaluates
each individual ondifferent relay constraints. It diversifies the
evaluated solutions across different numbers of relays. As a
trade-off, HMOEA shows poor energy consumption and C-
metric results, even in comparison with NetKeys, Prim, and
Kruskal. Comparing GPrim and Kruskal, the PFs of GPrim
still dominate the PFs of Kruskal in the test set S3, where the
number of sensors is twice the number of potential relays.
In the set S2, Kruskal produces some better solutions over
GPrim in energy consumption with small networks (NIn8) or
use fewer relays in more extensive networks (NIn12). How-
ever, GPrim still covers, on average, more than 97% of the
PFs computed by Kruskal in all network instances. Figure10
illustrates the PFs of six algorithms with a specified seed.

In terms of hypervolume (see Table 6a), we can observe
that GPrim outperforms Prufer, NetKeys, Prim, and Kruskal
in all instances, especially on the S3 set. Meanwhile,
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Fig. 8 Comparison of five
algorithms on NIn1

Fig. 9 Box plots for C-metric. The rectangle at row A and column B represent C(A, B). Each rectangle includes 12 box plots (left to right)
corresponding to 12 instances (NIn7 to NIn18). C-metric values are scaled to [0,1]
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Fig. 10 The comparison of Pareto-front on test set S2 (NIn7 to NIn12) and S3 (NIn13 to NIn18)

HMOEA produces a better H V metric than GPrim in some
instances (NIn11, NIn17, and NIn18) and worse than GPrim
in the remaining instances. Note that the superiority of
HMOEA in those instances comes from the better spreading
of PFs regarding the relay’s objective while the convergence
of HMOEA is weak as mentioned in C-metric above. Prufer
gives the worst result in all test cases among the remaining
algorithms. ThePFs obtained byNetKeys are generally better
than Prim. Meanwhile, Kruskal outperforms both NetKeys
and Prim. However, the results of Kruskal deteriorate in the
test set S3.

Considering the diversity and spread of PFs, the results
on 
 value (see Table 6b) shows that GPrim and HMOEA
produce very diverse non-dominated networks with 
 =
0.840 on average while the average diversity of the HMOEA
is
 = 0.845 inwhichGPrim performs the best in the second
test set S2 and HMOEA is the best in the third test set S3.
The average Delta metric of Kruskal is 
 = 0.933; Prufer is

 = 0.938;NetKeys and Primhave a very similar result
 =
0.946. Furthermore, the number of nondominated solutions
obtained by GPrim (40 solutions on average) is more than
four times better than others. The detail on each network
instance is shown in Table 6c.

In general, the proposed approach outperforms other
approaches in all evaluated aspects. HMOEA shows an
advantage in the relay’s objective resulting in the diversity
and spread of PFs. However, as a trade-off, HMOEA pro-
videsweakperformances in the convergence aspect. Thepoor
result of the Prufer code is predictable due to problems with

infeasible structures and low locality, as mentioned in Got-
tlieb et al. (2001); Rothlauf and Rothlauf (2006). The general
phenotypic application of PrimRST is generally worse than
the NetKeys approach. In comparison, Kruskal can achieve
better results than NetKeys in most cases. This result is con-
sistent with the results shown (Raidl and Julstrom 2003).
However, the results of Kruskal tend to deteriorate in the
third test set S3.

4.5.3 Evaluation on sparse solution spaces

The initialization experiment (Sect. 4.4.1) showed the rela-
tion between the max-hop constraint and the sparsity of
solution space and its impact on different random-tree algo-
rithms. Since KruskalRST tends to produce higher-diameter
trees than PrimRST, it also produces more infeasible solu-
tions when tightening themax-hop constraint. Consequently,
the KruskalRST-based approach also struggles in a sparse
solution space.

For example, we examine five algorithms on the same
instance NIn9 with h̄ = 2 and h̄ = 12. The result is shown
in Fig. 11. With the same settings as in 4.5.2 (h̄ = 12),
Kruskal gives better results than both NetKeys and Prim.
However, when tightening the max-hop constraint (h̄ = 2),
the result obtained by Kruskal is worse than both NetKeys
and Prim. This result is consistent with the deterioration of
Kruskal in the test set S3 since adding more sensors in the
network requires more hops to connect all sensors. Note that
the best results are obtained by GPrim in both cases; the

123



A phenotype-based multi-objective...

Table 6 Performance of competing algorithms on testsets S2 and S3

Instance HMOEA Prufer NetKeys Prim Kruskal GPrim

(a) Hypervolume (H V )

NIn7 0.879 ± 0.001 0.763 ± 0.013 0.774 ± 0.029 0.765 ± 0.024 0.858 ± 0.015 0.930 ± 0.001

NIn8 0.854 ± 0.002 0.716 ± 0.021 0.771 ± 0.015 0.740 ± 0.026 0.836 ± 0.024 0.907 ± 0.005

NIn9 0.909 ± 0.001 0.737 ± 0.015 0.788 ± 0.020 0.733 ± 0.013 0.890 ± 0.019 0.964 ± 0.006

NIn10 0.910 ± 0.001 0.750 ± 0.011 0.806 ± 0.024 0.753 ± 0.006 0.897 ± 0.022 0.967 ± 0.000

NIn11 0.930 ± 0.000 0.602 ± 0.015 0.709 ± 0.025 0.609 ± 0.007 0.764 ± 0.028 0.780 ± 0.017

NIn12 0.922 ± 0.001 0.762 ± 0.011 0.797 ± 0.023 0.738 ± 0.008 0.905 ± 0.016 0.941 ± 0.021

NIn13 0.788 ± 0.007 0.688 ± 0.018 0.735 ± 0.021 0.740 ± 0.014 0.765 ± 0.019 0.843 ± 0.001

NIn14 0.751 ± 0.019 0.649 ± 0.022 0.733 ± 0.020 0.725 ± 0.025 0.741 ± 0.015 0.885 ± 0.006

NIn15 0.741 ± 0.025 0.608 ± 0.038 0.621 ± 0.030 0.671 ± 0.016 0.719 ± 0.046 0.899 ± 0.001

NIn16 0.896 ± 0.002 0.744 ± 0.010 0.810 ± 0.009 0.762 ± 0.018 0.825 ± 0.016 0.959 ± 0.001

NIn17 0.915 ± 0.002 0.575 ± 0.010 0.708 ± 0.032 0.604 ± 0.008 0.700 ± 0.024 0.814 ± 0.015

NIn18 0.914 ± 0.002 0.556 ± 0.009 0.706 ± 0.018 0.577 ± 0.017 0.697 ± 0.026 0.805 ± 0.011

(b) Delta-metric (
)

NIn7 0.775 ± 0.028 0.878 ± 0.019 0.892 ± 0.023 0.868 ± 0.020 0.829 ± 0.012 0.599 ± 0.002

NIn8 0.776 ± 0.031 0.870 ± 0.030 0.873 ± 0.020 0.870 ± 0.019 0.842 ± 0.037 0.699 ± 0.048

NIn9 0.826 ± 0.017 0.937 ± 0.017 0.941 ± 0.015 0.945 ± 0.017 0.923 ± 0.025 0.758 ± 0.032

NIn10 0.825 ± 0.022 0.940 ± 0.016 0.944 ± 0.015 0.945 ± 0.010 0.917 ± 0.028 0.779 ± 0.015

NIn11 0.799 ± 0.017 0.962 ± 0.012 0.948 ± 0.026 0.975 ± 0.016 0.955 ± 0.020 0.762 ± 0.010

NIn12 0.885 ± 0.028 0.956 ± 0.009 0.974 ± 0.013 0.971 ± 0.009 0.936 ± 0.013 0.785 ± 0.012

NIn13 0.882 ± 0.028 0.940 ± 0.040 0.947 ± 0.025 0.953 ± 0.031 0.950 ± 0.033 0.935 ± 0.004

NIn14 0.874 ± 0.048 0.936 ± 0.034 0.947 ± 0.020 0.921 ± 0.036 0.940 ± 0.035 0.947 ± 0.027

NIn15 0.896 ± 0.036 0.960 ± 0.022 0.975 ± 0.033 0.969 ± 0.025 0.979 ± 0.023 0.960 ± 0.006

NIn16 0.851 ± 0.033 0.945 ± 0.019 0.985 ± 0.012 0.967 ± 0.013 0.970 ± 0.012 0.966 ± 0.012

NIn17 0.878 ± 0.019 0.964 ± 0.009 0.991 ± 0.022 0.983 ± 0.008 0.968 ± 0.016 0.946 ± 0.008

NIn18 0.877 ± 0.047 0.963 ± 0.012 0.982 ± 0.016 0.987 ± 0.010 0.993 ± 0.011 0.945 ± 0.007

(c) Cardinality (O N V G)

NIn7 10.30 ± 1.100 10.00 ± 1.483 9.60 ± 1.428 11.00 ± 2.236 14.00 ± 1.095 38.00 ± 0.000

NIn8 9.50 ± 1.285 9.80 ± 1.887 10.80 ± 1.327 10.00 ± 1.183 12.90 ± 2.948 27.70 ± 0.900

NIn9 8.50 ± 1.025 10.90 ± 2.343 11.80 ± 2.040 10.90 ± 1.221 15.20 ± 2.561 71.80 ± 3.572

NIn10 8.80 ± 0.872 10.90 ± 1.972 11.10 ± 2.948 10.30 ± 1.487 17.70 ± 2.934 69.60 ± 3.323

NIn11 10.40 ± 0.917 9.70 ± 1.900 17.50 ± 3.170 9.80 ± 3.400 16.30 ± 2.452 98.60 ± 1.114

NIn12 6.80 ± 0.872 11.70 ± 1.187 11.00 ± 1.789 10.30 ± 2.193 19.20 ± 2.441 94.60 ± 3.980

NIn13 5.00 ± 1.000 3.10 ± 1.640 2.50 ± 0.671 2.40 ± 1.020 2.40 ± 1.020 4.00 ± 0.000

NIn14 5.10 ± 1.446 4.30 ± 1.487 4.30 ± 1.100 6.20 ± 1.778 3.20 ± 0.748 9.10 ± 0.539

NIn15 3.80 ± 1.536 3.70 ± 1.005 1.90 ± 0.539 3.00 ± 1.414 2.00 ± 0.894 6.00 ± 0.000

NIn16 7.00 ± 1.732 8.00 ± 1.183 5.70 ± 1.952 6.50 ± 1.910 6.00 ± 1.732 24.30 ± 1.900

NIn17 6.20 ± 0.872 9.80 ± 1.990 10.10 ± 3.448 5.00 ± 1.897 6.80 ± 2.600 23.20 ± 2.891

NIn18 6.50 ± 1.500 8.00 ± 2.191 10.40 ± 2.905 4.00 ± 1.844 6.20 ± 2.522 22.30 ± 3.257

Each table shows the results on one metric and bold values indicate the best value

gap to other algorithms increases when the feasible solution
space becomes smaller.

4.5.4 Evaluation on dense network

We vary the communication range from 25 to 40 to examine
the impact of the density of the graph on six algorithms. Fig-
ure12 shows the comparison of hypervolume, Delta-metric,
and O N V G with different communication radius on the
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Fig. 11 Performance of
competing algorithms in
different h̄ on network instance
NIn9

Table 7 Complexity comparison for each algorithm

Decoding Crossover Mutation Repair

Prufer O(n) O(n) O(n) O(m)

NetKeys O(m logm) O(m) O(m) –

Prim O(n) O(n) O(n) –

Kruskal O(n) O(n) O(n) –

HMOEA O(n2) O(n) O(1) –

GPrim O(n) O(nh̄) O(max(nh̄, m)) –

network instance NIn9. The ranking of the algorithms is sim-
ilar to that of the previous experiments. However, we can
observe the different tendencies of algorithms when increas-
ing the radius. Prufer,NetKeys, Prim, andKruskal deteriorate
their resultswhen increasing the communication range,while
GPrim and HMOEA tend to produce better results with the
dense graph.

4.5.5 Complexity evaluation

Wesummarize the analysis of the complexity of the five algo-
rithms in Table 7. The integer search operators on Prufer code
only take O(n) in each move. However, the repair process
of removing invalid edges takes O(m) in the worst case.
Both Prim and Kruskal only take O(n) in crossover and
mutation operator and require no repair process. NetKeys
encodes all possible edges and requires a sorting algorithm;
thus, it costs O(m logm) in decoding and O(m) in both
crossover and mutation. In HMOEA, the decoder uses a
CBTC-based heuristic which requires O(n2) to decode a
chromosome for a given relay constraint, while the repro-
duction costs O(n) for a recombination and O(1) for a
mutation. The complexity of GPrim is the same as described
in Sect. 3.

Table 8 shows the average running time of five algo-
rithms in three test sets. The running time of GPrim is an
acceptable tradeoff considering its various improvements.

The fastest algorithm is Prim in most cases. Prufer gives
the fastest result in some cases but is often much slower as
infeasible structures occur more frequently. Kruskal has the
same theoretical complexity as Prim, but requires higher pro-
gramming constants. Meanwhile, NetKeys and, especially,
HMOEA requires much computation in large and dense net-
works.

5 Conclusions and future works

This paper has made several contributions to reducing
nodes’ energy consumption and prolonging the wireless sen-
sor networks’ lifetime. Firstly, we introduced the NEBP
with two objectives: minimizing the number of relay nodes
and maximizing the network lifetime. We considered the
limiting number of communication hops for each sensor
node toward the base station. Secondly, a phenotype-based
multi-objective evolutionary algorithm is developed to simul-
taneously tackle two objectives of the NEBP problem. We
proposed local heuristics aiding the initialization, crossover,
and mutations to enhance the convergence speed of the algo-
rithm in an appropriate computation. Extensive experiments
are conducted comparing the proposed method to other stan-
dard encoding methods. The simulation results indicate that
the proposed method dramatically improves all measured
metrics with a relatively reasonable time tradeoff.

In the scope of this paper, we assumed that all represen-
tations are integrated with the NSGA-ii structure. However,
hybridizing different encoding methods with different MOO
algorithms may give us additional insight into the effect of
representation on each MOO algorithm. Moreover, these
results show prospects for phenotype-based approaches,
which may prove promising for similar problems. In future
works, we plan to find more optimized algorithms for the
problem and expand the model to cope with mobile sensors.
In addition, we intend to consider the same problem for the
heterogeneouswireless sensor networks instead of the homo-
geneous WSNs.
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Fig. 12 Comparison of hypervolume, delta-metric and O N V G with different communication radius on network instance NIn9

Table 8 Average algorithm
running time (in s)

Instance HMOEA-mean Prufer NetKeys Prim Kruskal GPrim

NIn1 35.1 19.1 25.0 17.2 21.8 23.9

NIn2 39.2 19.3 26.6 17.2 21.8 24.0

NIn3 39.6 27.3 34.3 19.8 29.8 26.1

NIn4 39.6 28.4 34.5 19.8 30.0 26.0

NIn5 39.6 27.9 34.5 19.8 30.5 26.2

NIn6 37.1 28.0 34.3 19.9 30.5 25.8

NIn7 85.9 27.9 39.5 29.7 34.5 42.2

NIn8 36.5 22.9 24.0 28.9 32.1 40.6

NIn9 342.2 63.0 129.3 68.2 84.4 98.8

NIn10 293.8 59.0 114.4 70.8 81.6 98.2

NIn11 3921.3 235.8 1151.3 195.0 338.0 249.0

NIn12 1060.3 131.5 379.2 158.3 199.4 215.1

NIn13 117.9 36.0 55.9 43.1 44.5 76.3

NIn14 101.3 37.5 50.5 41.9 46.5 73.6

NIn15 365.8 110.1 154.9 106.9 119.8 227.8

NIn16 332.6 125.8 134.4 106.3 115.9 178.2

NIn17 4303.1 594.6 1386.9 287.2 436.8 459.8

NIn18 4427.1 639.5 1493.7 297.5 463.0 478.2
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